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WHY DSP BOXES SET THE SAME WAY DIFFER

Introduction
A common pro audio problem is that if you input the 
same settings into different manufacturer’s program-
mable parametric equalizer sections on processor 
boxes or control programs, they produce different 
results; some more so than others. This makes compar-
ing DSP platforms difficult.

The explanation is simple: manufacturers use differ-
ent definitions of filter bandwidth. Understanding this 
is not as simple, as explained here.

The proliferation of loudspeaker processing units 
demonstrates that the differing definitions of band-
width gets thorny when one manufacturer develops 
filters for use in a DSP box made by another manu-
facturer, and the end user is attempting to implement 
them in a DSP unit made by a third manufacturer. 
Frustration ensues.

It is important to note this isn’t a digital problem or a 
DSP problem. It is a definition problem. Indeed, analog 
parametric equalizers are just as prone to head-to-head 
comparisons as DSP units, and for the same reasons. 
For an experiment, make matching settings on different 
analog parametric EQs and run a response curve for 
each. Comparing them may surprise you.

The same is true for digital processors. Correspond-
ing amplitude and frequency settings will track closely; 
it is the bandwidth settings where things get sticky.
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Bell Filter (“Bandwidth”) Definitions
A significant inconvenience in the audio industry today 
is that filter bandwidth is defined in several different 
ways. You cannot expect two pieces of equipment set 
the same way to have the same frequency response. 

Filter bandwidth is not even set the same way: it may 
be set in octaves or Q. 

It is not even widely known what to expect in a 
particular case. There is an incentive to become famil-
iar with one device or manufacturer and avoid change, 
even when it would be good for other reasons. It’s not 
always even possible to get two equalizers to have the 
same frequency response, but you can usually get close.

Many parametric equalizers use cascaded second-
order bandpass filters1, which makes their responses 
add in dB — then each band can be treated indepen-
dently. Given a way to convert one type of bandwidth 
to another, different equalizers of this general type can 
be set so that the responses match, limited only by the 
resolution of the bandwidth control.

The pro audio industry needs to promote under-
standing of the issues and to determine what each 
manufacturer is doing. Also, it is reasonably easy to test 
equalizers to determine what the bandwidth definition 
is, and that will be covered here.

Only a handful of definitions are in use and once 
these are well known, it becomes possible to use equip-
ment with differing definitions, and ultimately the 
matching process could be automated.

Isn’t There One Definition of Bandwidth?
As long as bandwidth refers to just a frequency range, 
there is essentially one definition, although it has 
several forms. The standard ones are hertz, Q, and 
octaves, and well-known formulas exist to convert one 
to another. Octaves and Q have the advantage of being 
independent of the filter center frequency. Here are 
some definitions:

(Frequency Span in Hz) = (High Frequency) – (Low Frequency)

Q = (Center Frequency) / (Frequency Span in Hz)

2octaves = (High Frequency) / (Low Frequency)
Multiple definitions come into play when the end-

points of the frequency range refer to a particular level 
on a filter magnitude response curve, such as “3 dB 
down,” and result largely from the possible choices for 
this level.

Historically, bandwidth was defined for a bandpass 
filter, and referred to the difference between the fre-
quencies where the passband dropped to –3 dB (see 
Figure 1). 

1Second-order bandpass filters are those described by a 
transfer function having quadratic equations in the numera-
tor and denominator. A quadratic equation is one in which 
the first term is squared, having the general form ax²+ bx + c 
= 0, where a, b, and c are constants.
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Figure 1. Most common bandwidth definition.

As shown in Figure 1, the bandpass has a 2 octave 
bandwidth, and the Q is 1/ (2-0.5) = 2/3. If the center 
frequency were 1000 Hz, the bandwidth would be 2000 
Hz – 500 Hz = 1500 Hz.

Choosing a level other than –3 dB changes the 
definition of bandwidth for a given filter response, 
and therefore changes the filter response for a given 
bandwidth setting. The Linkwitz-Riley crossover is one 
example of a filter where the –3 dB point is not used; 
the –6 dB point is used instead.
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Overview of the Bell Filter Situation
What we see and refer to as “bandwidth” in paramet-
ric equalizers is called a “Bell filter” due to its shape. 
Strictly speaking, it is not a true bandpass filter in an 
engineering sense, although it is made from one.

A second-order Bell filter, which is one of a cascaded 
set of filters, is equivalent to a second-order bandpass 
filter (with a given Q) summed back with the original 
signal as shown in Figure 2.

effective technique has been used historically in analog 
constant-Q equalizers, and the result is very nearly 
constant compared to proportional-Q equalizers. 

The use of microprocessors and DSP have made oth-
er approaches more practical, where filter bandwidth 
is automatically adjusted in various ways to achieve 
particular filter gains at the frequencies corresponding 
to the bandwidth.

What are the Other Definitions?
The other definitions will be described here using the 
term Filter Gain, to mean the gain for the Bell filter at 
either frequency at the endpoints of the bandwidth. 
Instead of considering the bandpass response, a rea-
sonable definition is to make the (Bell) Filter Gain –3 
dB from the peak. But if, for example, a filter response 
only ranges from 0 dB to +2 dB, it’s impossible to use a 
–3 dB response point. The Bell filter has this dilemma 
for small settings. This is remedied by choosing the 
filter gain to be one-half of the peak (setting) dB for set-
tings under 6 dB. At 6 dB, these two definitions agree, 
and this will be referred to as the 3 dB Hybrid method 
here. Figure 4 is a graph of the Bell filter curves. Note 
that the 3 dB Hybrid method (dotted) is 3 dB down at 
the bandwidth (solid horizontal lines), for settings 6 dB 
or higher.

Figure 2. Creating a Bell curve from a bandpass filter.

However, the Bell curve always has a larger band-
width than its corresponding bandpass filter, taken at 
any appropriate reference gain, such as –3 dB from 
peak. Figure 3 shows a Bell filter response superim-
posed on the bandpass from which it can be construct-
ed. Notice the widening of the Bell response. Techni-
cally, the bandpass in this construction has been shifted 
up 6 dB for the purpose of comparison.

Figure 3. Comparison between Bell and bandpass curves.

One definition currently in use simply sets the 
bandpass from the filter bandwidth setting (referred 
to here as Bandpass Q). Or you can compensate by 
using a smaller (fixed) bandwidth, which narrows the 
Bell so the bandwidth is correct for one setting. This 
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Figure 4. Bandpass Q definition vs. hybrid (3 dB and dB/2).

Another definition sets the bandwidth such that 
filter gain is one-half of the peak always, which is a con-
sistent definition that results in a comparatively nar-
rower response curve for large settings. It will be called 
the dB/2 method.

The particular definition is sometimes chosen to be 
different when the Bell filter is attenuating (cutting) 
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rather than providing gain (boosting). Many manufac-
turers treat the two the same way, yielding a symmetri-
cal response between boost and cut, but others set the 
bandwidth smaller for cutting filters, such as by forcing 
the Filter Gain to be –3 dB from unity gain. For low 
bandwidth settings, this results in a notch filter.

What are Particular Manufacturers Doing?
The author knows Rane uses Bandpass-Q (so far), 
has information from EAW, and has tested products 
from QSC, dbx, Biamp, and Shure. There is also some 
information about XTA, Ashley, Symetrix and BSS, but 
not verified at this time. It is quite possible that a given 
manufacturer has not always applied the same defini-
tion. Figures 5 and 6 compare some definitions, the 
first showing the filter gain (in absolute dB, at the band-
width edge frequencies) versus setting (mentally turn 
it over and it looks more familiar). The second shows 
the Q of a bandpass that could construct the filter (set 
to a Q of one, or equivalent setting of 1.3885 octaves), 
versus filter gain setting.

The dB response graph reveals definitions based on 
dB response versus setting: Biamp, with dB/2, and the 3 
dB Hybrid: EAW and others, including possibly Syme-
trix and BSS. Although it’s not obvious, the unusual 
dBx adaptive-Q seems to be based on dB response, and 
may be characterized by the following equation for 
response dB at bandwidth endpoints versus setting dB:

y = –0.0006874x3 + 0.0005066x2 + 0.841x

At a setting of 12 dB, this is approximately 3 dB 
down. dbx refers to this response as emulating mixing 
console EQ.

The bandpass Q graph reveals the constant band-
pass Q definition of Rane, QSC, Shure, and dbx 
(constant-Q).

Other Aspects
Individual filters can be combined in different ways, 
such as cascaded or parallel, and while this has little 
or no impact on the response of a single filter, two or 
more filters are a different story. Only cascaded filters 
are considered here, and this characteristic can easily 
be tested.

So far, the issues apply both to analog and digital 
filters, but digital filter response becomes more asym-
metrical as frequencies affected by the filter approach 
the Nyquist limit (24 kHz for 48 k sample rate), compli-
cating the bandwidth issue. This effect can be tolerated 
(ignored), or it can be countered in different ways. Usu-
ally the gain drops to unity at the Nyquist, but there is a 
difficult method for designing digital bell filters that are 
much more symmetrical, and they don’t drop to unity 
gain at the Nyquist. Even so, all DSP products must 
apply a filter below the Nyquist, and so typically there 
is a sharp cutoff with linear (or near-linear) phase at 23 
kHz, “chopping off” the filter response abruptly.

A related issue is how the frequency response is 
shown in software. The author has found that the digi-
tal effects just mentioned are not shown by all manu-
facturers, so might either be corrected or ignored. 
The Biamp Audia appears to be correcting the actual 
response.

Figure 5. Filter gain versus setting for various manufacturers.

Figure 6. Q versus gain setting for results shown in Figure 5.
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Equipment Testing
Testing is quite simple but involves a bit of mathemat-
ics to understand the results.

Connect the equipment to a signal generator and de-
tector (e.g., Audio Precision or equivalent), and be sure 
that the only processing is from the parametric filter(s) 
being adjusted (no crossover, compressor, etc). Check 
for interaction between filters, by setting two filters 
(call them A and B) so that they both affect a frequency, 
and measure with just A, just B, and both. The result 
for both should be the sum of the readings for A and 
for B. In that case, testing one filter is sufficient, and 
otherwise the situation becomes more complicated, 
and is not covered here.

To test a single filter, set it at a frequency well below 
the Nyquist, such as 1 kHz, measure at one frequency 
chosen as one that will vary significantly, and record 
the level for a collection of settings. A good choice is a 
generator frequency of 707 Hz with the filter set to 1.0 
octave, as that will immediately reveal a dB response 
filter type, such as dB/2. Be careful that readings aren’t 
affected by clipping or noise. A collection of -12, -11 … 
-1, 0, 1… 11, 12 should be more than sufficient. You can 
use intervals of two or three dB, but it can help in some 
cases to have extra data. One bandwidth setting should 
also be sufficient. Additional measurements can be 
taken, such as for several bandwidth settings. Measure-
ment at the 0 dB setting is included only as a check of 
equipment gain.

From these numbers, you can tell if the definitions 
agree for boost and cut, and if they don’t, consider 
boost and cut as separate cases. If the numbers are 
nearly equal, the difference can be due to measurement 
error.

Using the octaves or Q setting, you can determine 
either bandwidth end frequency. The generator/mea-
surement frequency should be chosen to be close to 
one of these in order to minimize the effect of mea-
surement error. Below are formulas for the finding the 
lower frequency and for converting between octaves 
and Q.
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If the measurement frequency is chosen to be either 
endpoint of the bandwidth (such as 707 Hz for a 1 kHz, 
1.0 octave filter), it may immediately reveal a pattern 
such as 3 dB from setting, or (dB/2). If so, you are done. 
If no such pattern is revealed, the next step is to deter-
mine the bandpass Q at each setting from the follow-
ing formula. Use the readings ‘M’ from each setting 
‘g’. If a reading M is larger than the setting ‘g’ because 
of a measurement error, it must not be used in this 
equation. Also, settings and readings in dB need to be 
converted by g, M = 100.05dB
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where g is the setting, f is the generator frequency, fc is 
the center frequency, and M is the measurement. This 
works for any frequency, f, different than fc, and its deri-
vation is given later, where:
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If the bandpass Q is found to be nearly constant, the 
equipment is using the bandpass Q definition. The Q 
error needs to be attributable to measurement error.

The author has investigated the error sensitivity. 
Assume that the measurement error is 0.01 dB. If a 
bandwidth end frequency is used, the Q is 1.4, and the 
absolute value of the setting is at least 4 dB, the Q error 
will be below 0.01. Settings from 1 dB to 3 dB can result 
in errors up to 0.03. Error increases with increasing Q. 
Choosing other reasonable measurement frequencies 
increases the error slightly.

Whether the bandpass Q is constant or not, the en-
tire filter response can be calculated from the bandpass 
Q. No matter what your measurement frequency, you 
can now calculate the response at either bandwidth end 
frequency using the following formula:
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Where QBell is defined above. This can immediately 
reveal a pattern mentioned earlier, such as -3 dB.

Some definitions won’t be clear from testing, but can 
be characterized anyway using a table or curve fit for 
dB or bandpass Q as a function of setting, as was done 
above for dbx (adaptive-Q).
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Mathematical Analysis
Here lies the complete mathematical analysis of the 
above results and becomes quite involved. It is provid-
ed for DSP designers and the mathematically curious.

When the filter has a peak greater than unity gain 
(boost), it is equivalent to a scaled bandpass plus one 
(see Figure 1). The case where the peak is less than 
unity gain (cut) has a transfer function that is the re-
ciprocal of the first case. This is equivalent to both the 
filter’s dB setting and magnitude response in dB having 
a sign reversal. Therefore, results for the boost case ap-
ply to the cut case.

All filters are assumed to be designed for an angular 
(or radian) frequency, ω, of one; other design frequen-
cies require a substitution into these equations of:
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The (analog) Bell filter has the following transfer 
function, constructed from a bandpass:
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Notice that Q here is that of a bandpass filter. Evalu-
ating at s = jω and taking the squared-magnitude yields:
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Bandpass Q is a measure of frequency span where at 
either frequency at the ends of the span, the bandpass 
magnitude response is down 3 dB, easily shown to be 
given by this function of the end frequencies (if the 
angular design frequency is one):

11  , −− =−= abbaBPQ ωωωω

We can define another type of Q; call it QBell , which 
is a function of a frequency where we consider the 
magnitude response of the Bell filter curve (possibly a 
bandwidth end frequency):
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Then substituting into the squared-magnitude re-
sponse results in:
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Given a setting g and a desired or measured mag-
nitude M which may be for instance 0.7071*g for 3 dB 
down from the peak, we can solve for the bandpass Q 
needed to achieve a desired Bell Q.
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QBell may be defined to be a specific bandwidth 
where the Bell magnitude is controlled, or can be a 
function of an arbitrary measurement frequency. It is 
important to remember the value of M depends on the 
particular meaning of QBell.

We can of course solve for QBell, given a Bandpass Q, 
which may be a function of g:
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Given a definition where M is some complicated 
function of g, M = M(g), the general formulas can be 
applied. Here are some simplifications.
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3 dB Down
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Given the bandpass Q, the response at any frequency is 
found using the equation for M2 converting from/to dB.

Summary
Bandwidth definitions can be determined for many 
parametric equalizers, making it practical to transfer 
settings between devices with different definitions. This 
is limited only by control resolution. There are only a 
handful of definitions, so sometimes conversion won’t 
be required. Testing to determine the definition is not 
difficult, and can support claims by manufacturers.

Conversion Calculator
Rane has created an Excel conversion calculator for 
inputting parameters into Rane DSP processors from 
EAW settings. Other manufacturers may be available in 
the future. The calculator is available to download from 
our website at the page of this RaneNote, and also from 
the Library page.
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