
SNMP-�

SNMP: Simple? Network
Management Protocol

• SNMP Overview

• The Message Format

• The Actual Bytes

Douglas Bruey
Rane Corporation

RaneNote 161
© 2005 Rane Corporation

RaneNote
SNMP: SIMPLE? NETWORK MANAGEMENT PROTOCOL

Introduction
Although some RS-232 connectors still cling desper-
ately to audio hardware products around the world,
for years Ethernet and the Internet Protocol (IP) have
been replacing older serial communication formats as
the connection of choice for monitoring and control-
ling audio as well as video, networking, and industrial
equipment. Since the childhood of computer network-
ing, network designers envisioned a world where a
person’s audio system, video system, HVAC system,
and toaster all connect to the same network. To that
end, computer scientists developed a protocol capable
of managing any network device. The result was SNMP,
which stands for Simple Network Management Pro-
tocol. SNMP was introduced in 1988 and now in-
cludes three distinct versions SNMPv1, SNMPv2, and
SNMPv3. Due to the maturity of SNMP, many device
manufacturers include support for this protocol in
their products, and many SNMP management solu-
tions exist off-the-shelf for common operating systems
and programming languages. However, SNMP man-
agement capabilities are still lacking for today’s control
system platforms, requiring control system program-
mers to write their own SNMP management code.

Of course, writing an SNMP manager should be
simple, right? After all, it is the Simple Network Man-
agement Protocol. Unfortunately, “Simple” means “easy
for computer scientists who spend eight hours a day
thinking about designing network protocols.” When
making the leap from constructing text strings to con-
structing SNMP messages, the word “Simple” is a cruel
joke that leaves control system programmers shouting
“Just tell me the bytes to send!”

In answer to that plea, this RaneNote provides a
technical overview of SNMPv1, along with the termi-
nology necessary to understand the SNMP message,
describe the message format, and show exactly (byte-
by-byte) how to construct the SNMP message.

SNMP-�

SNMP: Overview
SNMP is the protocol that allows an SNMP manager
(the controller) to control an SNMP agent (the control-
ee) by exchanging SNMP messages. An SNMP message
is a packet sent over UDP/IP to port 161. UDP/IP is
the User Datagram Protocol over IP. To learn how to
get your hardware to send your SNMP message using
UDP/IP to port 161, pick your favorite programming
language and hit the help files. To learn how to con-
struct an SNMP message, read on.

The main purpose of an SNMP message is to control
(set) or monitor (get) parameters on an SNMP agent.
In SNMP, a parameter is an instance of a more generic
object. For example, an SNMP agent may have several
instances of a microphoneMute object — one instance
for each microphone input. An SNMP manager can
set or get the value for each instance (each parameter).
In an SNMP agent, parameters are arranged in a tree.
SNMP uses an Object Identifier (OID) to specify the
exact parameter to set or get in the tree. An OID is a
list of numbers separated by periods. For example, the
OID addressing the microphoneMute parameter in a
Rane NM 1 is ‘1.3.6.1.4.1.2680.1.2.7.3.2.0’. This OID is
actually a combination of two values. The first value is
the OID of the generic object ‘1.3.6.1.4.1.2680.1.2.7.3.2’.
The second is the instance value, which specifies the
particular instance of the mirophoneMute object. The
instance value in this case is 0, because the NM 1 has
only one microphone input. But where do these OIDs
come from?

Every SNMP agent has an address book of all its
objects, called the MIB or Management Information
Base. The MIB provides the name, OID, data type,
read/write permissions, and a brief description for
each object in an SNMP agent. For an example, check
out the Rane NM 1 MIB at the end of this RaneNote.
Armed with information about an object from the
MIB, and the instance value, an SNMP manager can
send an SNMP message to set or get one of the param-
eters on an SNMP agent. However, there are two major
difficulties that an SNMP message must overcome to
be understood by any SNMP device.

All SNMP devices must understand an SNMP mes-
sage, which presents a couple problems. The first prob-
lem exists because different software languages have
slightly different sets of data types (integers, strings,
bytes, characters, etc). For example, an SNMP manager
sending a message full of Java data types may not be
understood by an SNMP agent written in C. To solve
this problem SNMP uses ASN.1 or Abstract Syntax

Notation One to define the data types used to build
an SNMP message. Since ASN.1 is independent of any
particular programming language, the SNMP agents
and managers may be written in any language. How-
ever, even when using valid ASN.1 data types another
problem still exists. When sending a particular data
type over the wire, how should it be encoded? Should
strings be null terminated as in the programming
language C, or not? Should Boolean values be 8 bits as
in C++ or 16 bits as in Visual Basic 6? ASN.1 includes
Basic Encoding Rules (BER) to address this problem.
Regardless of programming language, all data types are
encoded the same way before they are placed on the
wire by following the Basic Encoding Rules. In short,
all data fields in an SNMP message must be a valid
ASN.1 data type, and encoded according to the BER.
To send a properly formatted message, the programmer
must understand ASN.1 and the Basic Encoding Rules.

SNMP-�

ASN.1
Constructing a message requires some knowledge
of the data types specified by ASN.1, which fall into
two categories: primitive and complex. ASN.1 primi-
tive data types include Integer, Octet (byte, character)
String, Null, Boolean and Object Identifier. The Object
Identifier type is central to the SNMP message, be-
cause a field of the Object Identifier type holds the OID
used to address a parameter in the SNMP agent. To ex-
pand the programmer’s ability to organize data, ASN.1
allows primitive data types to be grouped together into
complex data types.

ASN.1 offers several complex data types necessary
for building SNMP messages. One complex data type is
the Sequence. A Sequence is simply a list of data fields.
Each field in a Sequence can have a different data type.
ASN.1 also defines the SNMP PDU (Protocol Data
unit) data types, which are complex data types specific
to SNMP. The PDU field contains the body of an SNMP
message. Two PDU data types available are GetRequest
and SetRequest, which hold all the necessary data to
get and set parameters, respectively. Ultimately the
SNMP message is a structure built entirely from fields
of ASN.1 data types. However, specifying the correct
data type is not enough. If the SNMP message is a Se-
quence of fields with varying data types, how can a re-
cipient know where one field ends and another begins,
or the data type of each field? Avoid these problems by
conforming to the Basic Encoding Rules.

Basic Encoding Rules
Follow the Basic Encoding Rules when laying out the
bytes of an SNMP message. The most fundamental
rule states that each field is encoded in three parts:
Type, Length, and Data. Type specifies the data type of
the field using a single byte identifier. For a brief table
of some data types and their identifiers, see Table 1.
Length specifies the length in bytes of the following
Data section, and Data is the actual value communicat-
ed (the number, string, OID, etc). One way to visualize
encoding a field is shown in Figure 1.

Some data types, like Sequences and PDUs, are built
from several smaller fields. Therefore, a complex data
type is encoded as nested fields, as shown in Figure 2.

There are two more Basic Encoding Rules necessary
for encoding an SNMP message. Both apply to encod-
ing OIDs. The first rule applies when encoding the first
two numbers in the OID. According to BER, the first
two numbers of any OID (x.y) are encoded as one value
using the formula (40*x)+y. The first two numbers in
an SNMP OID are always 1.3. Therefore, the first two
numbers of an SNMP OID are encoded as 43 or 0x2B,
because (40*1)+3 = 43. After the first two numbers are
encoded, the subsequent numbers in the OID are each
encoded as a byte. However, a special rule is required
for large numbers because one byte (eight bits) can
only represent a number from 0-255. For example, the
number 2680 in the Rane NM 1 microphoneMute OID
‘1.3.6.1.4.1.2680.1.2.7.3.2.0’ cannot be encoded using
a single byte. The rule for large numbers states that
only the lower 7 bits in the byte are used for holding
the value (0-127). The highest order bit is used as a flag
to let the recipient know that this number spans more
than one byte. Therefore, any number over 127 must be
encoded using more than one byte. According to this
rule, the number 2680 must be encoded 0x94 0x78.
Since the most significant bit is set in the first byte
(0x94), the recipient knows to use the lower 7 bits from
each byte (0x14 and 0x78) and decode the two bytes as
(0x14 *128) + 0x78 = 2680.

Primitive Data
Types Identifier

Complex Data
Types Identifier

Integer 0x02 Sequence 0x30

Octet String 0x04 GetRequest PDU 0xA0

Null 0x05 GetResponse PDU 0xA2

Object Identifier 0x06 SetRequest PDU 0xA3

Table 1. Some ASN.1 Data Types

Type Length Data

Type Length Type Length Data Type Length Data

Figure 1. Format: BER Encoded Field (Primitive Data Type)

Figure 2. Format: BER Encoded Fields (Complex Data Type)

SNMP-�

The SNMP Message Format
The SNMP message format specifies which fields to include in the message and in what order. Ultimately, the
message is made of several layers of nested fields. At the outer-most layer, the SNMP message is a single field,
of the Sequence type. The entire message is a Sequence of three smaller fields: the SNMP Version (Integer), the
SNMP Community String (Octet String), and the SNMP PDU (GetRequest, or SetRequest).

Field Description

SNMP message A Sequence representing the entire SNMP message consisting of the SNMP version, Community String,
and SNMP PDU.

SNMP Version An Integer that identifies the version of SNMP. SNMPv1 = 0

SNMP Community String An Octet String that may contain a string used to add security to SNMP devices.

SNMP PDU An SNMP PDU contains the body of the SNMP message. There are several types of PDUs. Three common
PDUs are GetRequest, GetResponse, SetRequest.

Request ID An Integer that identifies a particular SNMP request. This index is echoed back in the response from the
SNMP agent, allowing the SNMP manager to match an incoming response to the appropriate request.

Error An Integer set to 0x00 in the request sent by the SNMP manager. The SNMP agent places an error code in
this field in the response message if an error occurred processing the request. Some error codes include:
0x00 – No error occurred
0x01 – Response message too large to transport
0x02 – The name of the requested object was not found
0x03 – A data type in the request did not match the data type in the SNMP agent
0x04 – The SNMP manager attempted to set a read-only parameter
0x05 – General Error (some error other than the ones listed above)

Error Index If an Error occurs, the Error Index holds a pointer to the Object that caused the error, otherwise the Error
Index is 0x00.

Varbind List A Sequence of Varbinds.

Varbind A Sequence of two fields, an Object ID and the value for/from that Object ID.

Object Identifier An Object Identifier that points to a particular parameter in the SNMP agent.

Value SetRequest PDU – Value is applied to the specified OID of the SNMP agent.
GetRequest PDU – Value is a Null that acts as a placeholder for the return data.
GetResponse PDU – The returned Value from the specified OID of the SNMP agent.

Table 2. Fields in the SNMP message

Since the SNMP Version and SNMP Community String are primitive data types they aren‘t built from smaller
fields (no more layers). However, the PDU is a complex data type made up of several smaller fields (more lay-
ers). The PDU is composed of a Request ID (Integer), Error (Integer), Error Index (Integer), and a Varbind List.
A Varbind or Variable Binding is a Sequence of two specific fields. The first field is an OID, which addresses a
specific parameter. The second field contains the Value of the specified parameter. In a SetRequest, Value must be
the same data type specified in the MIB for the parameter being set. In a GetRequest, Value is a Null with length
0x00. This null data is a placeholder for the Value data that the SNMP agent returns using the GetResponse PDU.
As the name suggests, a Varbind List is a Sequence of Varbinds. When a message is setting or getting a single
parameter, the Varbind List holds only one Varbind. For an explanation of each SNMP message field see Table 2.

SNMP Message (Sequence)

SNMP
Version

(Integer)

SNMP
Community

String
(Octet String)

SNMP PDU (GetRequest, SetRequest, etc.)

SNMP Message (Sequence)

SNMP
Version

(Integer)
(Integer) (Integer)

(Integer)

SNMP
Community

String
(Octet String)

SNMP PDU (GetRequest, SetRequest, etc.)

Request ID Error Error
Index

Varbind List (Sequence)

Varbind (Sequence)

Object Identifier
(OID) (Integer, Octet String, etc.)

Value

SNMP-�

The Actual Bytes
To all the readers joining us at this point, because they
are in a hurry, or because they enjoy reading the last
chapter of their mystery novels first, welcome. Now
is the time to create the SNMP message by applying
the Basic Encoding Rules to the fields and laying out
the bytes in the correct order. As an example, Figure 3
shows an SNMP GetRequest packet for the micropho-
neMute parameter on a Rane NM 1 (OID: 1.3.6.1.4.1.26
80.1.2.7.3.2.0). It is important to remember that chang-
ing the number of bytes of any field in the SNMP mes-
sage requires changing the Length byte of all the outer
layers that enclose the edited field. For example, chang-
ing the GetRequest below to a SetRequest that sets the
microphoneMute to a Value of 1 (0x01) requires chang-
ing the PDU data type to SetRequest (0xA3) and the
Value field to an integer (0x04) of length 0x01 and data
0x01. However, increasing the length of the Value field
also increases the length of the Varbind, Varbind List,
PDU, and SNMP message fields.

SN
M

P
M

es
sa

ge
 T

yp
e

=
Se

qu
en

ce
, L

en
gt

h
=

44

Re
qu

es
t I

D
Ty

pe
 =

 In
te

ge
r

Le
ng

th
 =

 1
Va

lu
e

=
1

Er
ro

r
Ty

pe
 =

 In
te

ge
r

Le
ng

th
 =

 1
Va

lu
e

=
0

Er
ro

r I
nd

ex
Ty

pe
 =

 In
te

ge
r

Le
ng

th
 =

 1
Va

lu
e

=
0

V
ar

bi
nd

 L
is

t T
yp

e
=

Se
qu

en
ce

, L
en

gt
h

=
19

V
ar

bi
nd

 T
yp

e
=

Se
qu

en
ce

, L
en

gt
h

=
17

O
bj

ec
t I

de
nt

if
ie

r
Ty

pe
 =

 O
bj

ec
t I

de
nt

ifi
er

Le
ng

th
 =

 1
3

Va
lu

e
=

1.
3.

6.
1.

4.
1.

26
80

.1
.2

.7
.3

.2
.0

V
al

ue
Ty

pe
 =

 N
ul

l
Le

ng
th

 =
 0

3
0

2
C

0
2

0
1

0
0

0
4

0
7

7
0

7
2

6
9

7
6

6
1

7
4

6
5

A
0

1
E

0
2

0
1

0
1

0
2

0
1

0
0

0
2

0
1

0
0

3
0

1
3

3
0

1
1

0
6

0
D

2
B

0
6

0
1

0
4

0
1

9
4

7
8

0
1

0
2

0
7

0
3

0
2

0
0

0
5

0
0

SN
M

P
Ve

rs
io

n
Ty

pe
 =

 In
te

ge
r

Le
ng

th
 =

 1
Va

lu
e

=
0

SN
M

P
Co

m
m

un
it

y
St

ri
ng

Ty
pe

 =
 O

ct
et

 S
tr

in
g

Le
ng

th
 =

 7
Va

lu
e

=
 p

riv
at

e

SN
M

P
PD

U
 T

yp
e

=
G

et
Re

qu
es

t,
Le

ng
th

 =
 3

0

Fig
ur

e 3
. S

NM
P M

es
sa

ge
 D

iag
ra

m

References
1. Kevin Gross and Tom Holtzen. Controlling and

Monitoring Audio Systems with Simple Network
Management Protocol (SNMP), presented at the
105th Convention of the Audio Engineering Soci-
ety, San Francisco, September 26, 1998, preprint no.
4760.

2. ITU-T X.690, ASN.1 Encoding Rules Specification,
7/2002.

3. Vijay Mukhi’s Computer Institute, India
www.vijaymukhi.com/vmis/bersnmp.htm
www.vijaymukhi.com/vmis/snmp.htm

4. Instytut Elektroniki I Telekommunikacji (Electronic
and telecommunication Institute), Poland
www.et.put.poznan.pl/snmp/main/mainmenu.html

5. The TCP/IP Guide, Version 3.0, Charles M. Kozierok.
www.tcpipguide.com/free/t_SNMPVersion-

1SNMPv1MessageFormat.htm
6. Objective Systems, Inc.

www.obj-sys.com/asn1tutorial/node1.html

SNMP-�

Rane NM 1 MIB (Management Information Base)
--
-- RANE-NM1-MIB-V1.my
-- MIB generated by MG-SOFT Visual MIB Builder Version 4.0
-- Thursday, May 20, 2004 at 17:53:02
--
 RANE-NM1-MIB-V1 DEFINITIONS ::= BEGIN
 IMPORTS
 mfgExtensions
 FROM PEAKAUDIO-MIB
 OBJECT-TYPE
 FROM RFC-1212
 Counter
 FROM RFC1155-SMI;
--
-- Node definitions
--
 -- 1.3.6.1.4.1.2680.1.2.7
 rane OBJECT IDENTIFIER ::= { mfgExtensions 7 }

 -- 1.3.6.1.4.1.2680.1.2.7.3
 NM1 OBJECT IDENTIFIER ::= { rane 3 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.1
 micPreampGain OBJECT-TYPE
 SYNTAX INTEGER (10..65)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Gain through the mic preamplifier
 stage. Gain can be adjusted in
 1 dB increments in the range
 10dB through 65dB.”
 DEFVAL { 10 }
 ::= { NM1 1 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.2
 microphoneMute OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “State of the microphone mute.

 0 - unmuted
 1 - muted”
 ::= { NM1 2 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.3
 talk OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Present state of the talk button
 flip flop.

 0 - off
 1 - on”
 ::= { NM1 3 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.4
 talkToggle OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Toggle the talk button flip flop.
 Set this variable to any value
 other than its current value to
 cause the flip flop to change state.”
 ::= { NM1 4 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.5
 cough OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Present state of the cough
 momentary button.

 0 - not depressed
 1 - depressed”
 ::= { NM1 5 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.6
 coughDisable OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Control for disabling cough
 button from the audio muting
 logic. Cough indicator will
 continue to function normally but
 audio will not be affected.

 0 - cough function enabled
 - default
 1 - cough function disabled”
 ::= { NM1 6 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.7
 override OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Present state of the override
 momentary button.

 0 - not depressed
 1 - depressed”
 ::= { NM1 7 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.8
 overrideDisable OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Control for disabling override
 button from the audio muting
 logic. Override indicator will
 continue to function normally but
 audio will not be affected.

 0 - override function enabled
 - default
 1 - override function disabled”
 ::= { NM1 8 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.9
 privateMode OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Present state of the private
 mode button flip flop.

 0 - off
 1 - on”
 ::= { NM1 9 }

 -- 1.3.6.1.4.1.2680.1.2.7.3.10
 privateModeToggle OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Toggle the private mode button
 flip flop. Set this variable to any
 value other than its current
 value to cause the flip flop to
 change state.”
 ::= { NM1 10 }

 END

--
-- RANE-NM1-MIB-V1.my
--

©Rane Corporation �080� �7th Ave. W., Mukilteo WA 98�7�-�098 USA TEL ���-���-�000 FAX ���-��7-77�7 WEB www.rane.com

