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Introduction
Among the many definitions for the wonderful word 
“dharma” is the essential function or nature of a thing. 
That is what this note is about: the essential function 
or nature of audio analog-to-digital (A/D) converters. 
Like everything else in the world, the audio industry 
has been radically and irrevocability changed by the 
digital revolution. No one has been spared. Arguments 
will ensue forever about whether the true nature of the 
real world is analog or digital; whether the fundamen-
tal essence, or dharma, of life is continuous (analog) 
or exists in tiny little chunks (digital). Seek not that 
answer here. Here we shall but resolve to understand 
the dharma of audio A/D converters.
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Data Conversion
It is important at the onset of exploring digital audio 
to understand that once a waveform has been con-
verted into digital format, nothing can inadvertently 
occur to change its sonic properties. While it remains in 
the digital domain, it is only a series of digital words, 
representing numbers. Aside from the gross example 
of having the digital processing actually fail and cause 
a word to be lost or corrupted into none use, nothing 
can change the sound of the word. It is just a bunch 
of “ones” and “zeroes.” There are no “one-halves” or 
“three-quarters”. The point being that sonically, it be-
gins and ends with the conversion process. Nothing is 
more important to digital audio than data conversion. 
Everything in-between is just arithmetic and waiting.

That’s why data conversion is really that important. 
Everything else quite literally is just details. We could 
go so far as to say that data conversion is the art of 
digital audio while everything else is the science, in 
that it is data conversion that ultimately determines 
whether or not the original sound is preserved (and 
this comment certainly does not negate the enormous 
and exacting science involved in truly excellent data 
conversion.) 

Since analog signals continuously vary between 
an infinite number of states and computers can only 
handle two, the signals must be converted into binary 
digital words before the computer can work. Each 
digital word represents the value of the signal at one 
precise point in time. Today’s common word length is 
16-bits or 32-bits. Once converted into digital words, 
the information may be stored, transmitted, or oper-
ated upon within the computer.
In order to properly explore the critical interface 
between the analog and digital worlds, it is necessary 
to review a few fundamentals and a little history. 

Binary Numbers
Whenever we speak of “digital,” by inference, we speak 
of computers (throughout this paper the term “com-
puter” is used to represent any digital-based piece of 
audio equipment). And computers in their heart of 
hearts are really quite simple. They only can under-
stand the most basic form of communication or infor-
mation: yes/no, on/off, open/closed, here/gone – all of 
which can be symbolically represented by two things 
– any two things. Two letters, two numbers, two colors, 
two tones, two temperatures, two charges – it doesn’t 
matter. Unless you have to build something that will 
recognize these two states – now it matters. So, to keep 
it simple we choose two numbers: one and zero … a “1” 
and a “0.” Officially this is known as binary representa-
tion, from Latin bini two by two. In mathematics this 
is a base-2 number system, as opposed to our deci-
mal (from Latin decima a tenth part or tithe) number 
system, which is called base-10 because we use the ten 
numbers 0-9.

In binary we use only the numbers 0 and 1. “0” is 
a good symbol for no, off, closed, gone, etc., and “1” is 
easy to understand as meaning yes, on, open, here, etc. 
In electronics it is easy to determine whether a circuit 
is open or closed, conducting or not conducting, has 
voltage or doesn’t have voltage. Thus the binary num-
ber system found use in the very first computer, and 
nothing has changed today. Computers just got faster 
and smaller and cheaper, with memory size becoming 
incomprehensibly large in an incomprehensibly small 
space.

One problem with using binary numbers is they 
become big and unwieldy in a hurry. For instance, it 
takes six digits to express my age in binary, but only 
two in decimal. But, in binary, we better not call them 
“digits” since “digits” implies a human finger or toe, of 
which there are ten, so confusion reigns. To get around 
that problem John Tukey of Bell Laboratories dubbed 
the basic unit of information (as defined by Shannon 
– more on him later) a binary unit, or “binary digit” 
which became abbreviated to “bit.” A bit is the simplest 
possible message representing one of two states.

So, I’m 6-bits old! Well, not quite. But it takes 6-
bits to express my age as 110111. Let’s see how that 
works. I’m fifty-five years old. So in base-10 symbols 
that is “55,” which stands for 5-1s plus 5-10s. You may 
not have ever thought about it, but each digit in our 
everyday numbers represents an additional power of 
10 beginning with 0. That is, the first digit represents 
the number of 1s (100), the second digit represents the 
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number of 10s (101), the third digit represents the num-
ber of 100s (102), and so on. We can represent any size 
number by using this shorthand notation. 

Binary number representation is just the same ex-
cept substituting the powers of 2 for the powers of 10 
[any base number system is represented in this man-
ner]. Therefore (moving from right to left) each suc-
ceeding bit represents  
20 = 1, 21 =2, 22 =4, 23 =8, 24 = 16, 25 =32, etc. Thus, my 
age breaks down as 1-1, 1-2, 1-4, 0-8, 1-16, and 1-32, 
represented as “110111,” which is 32+16+0+4+2+1 = 55 
…or double-nickel to you cool cats. Figure 1 shows the 
two examples.

Now let’s take a look at how all this came about.

Figure 2. Aliasing Frequencies

The Story of Harry & Claude
The French mathematician Fourier unknowingly laid 
the groundwork for A/D conversion in the late 18th 
century. All data conversion techniques rely on looking 
at, or sampling, the input signal at regular intervals and 
creating a digital word that represents the value of the 
analog signal at that precise moment. The fact that we 
know this works lies with Nyquist.

Harry Nyquist discovered while working at Bell 
Laboratories in the late ‘20s and wrote a landmark 
paper1  describing the criteria for what we know today 
as sampled data systems. Nyquist taught us that for 
periodic functions, if you sampled at a rate that was 
at least twice as fast as the signal of interest, then no 
information (data) would be lost upon reconstruction. 
And since Fourier had already shown that all alternat-
ing signals are made up of nothing more than a sum of 
harmonically related sine and cosine waves, then audio 
signals are periodic functions and can be sampled with-
out lost of information following Nyquist’s instruc-
tions. This became known as the Nyquist frequency, 
which is the highest frequency that may be accurately 
sampled, and is one-half of the sampling frequency. 
For example, the theoretical Nyquist frequency for the 
audio CD (compact disc) system is 22.05 kHz, equal-
ing one-half of the standardized sampling frequency of 
44.1 kHz.

As powerful as Nyquist’s discoveries were, they were 
not without their dark side: the biggest being aliasing 
frequencies. Following the Nyquist criteria (as it is now 
called) guarantees that no information will be lost; it 
does not, however, guarantee that no information will 
be gained. Although by no means obvious, the act of 
sampling an analog signal at precise time intervals is 
an act of multiplying the input signal by the sampling 
pulses. This introduces the possibility of generating 
“false” signals indistinguishable from the original. In 
other words, given a set of sampled values, we cannot 
relate them specifically to one unique signal. As Fig-
ure 2 shows, the same set of samples could have result-
ed from any of the three waveforms shown … and from 
all possible sum and difference frequencies between 
the sampling frequency and the one being sampled. All 
such false waveforms that fit the sample data are called 
“aliases.” In audio, these frequencies show up mostly 
as intermodulation distortion products, and they come 
from the random-like white noise, or any sort of ultra-
sonic signal present in every electronic system. Solving 

1 Nyquist, Harry, “Certain topics in Telegraph Transmission 
Theory,” published in 1928.

Figure 1. Number Representation Systems
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the problem of aliasing frequencies is what improved 
audio conversion systems to today’s level of sophistica-
tion. And it was Claude Shannon who pointed the way.

Shannon is recognized as the father of information 
theory: while a young engineer at Bell Laboratories in 
1948, he defined an entirely new field of science. Even 
before then his genius shined through for, while still a 
22-year-old student at MIT he showed in his master’s 
thesis how the algebra invented by the British math-
ematician George Boole in the mid-1800s, could be 
applied to electronic circuits. Since that time, Boolean 
algebra has been the rock of digital logic and computer 
design.2 

Shannon studied Nyquist’s work closely and came up 
with a deceptively simple addition. He observed (and 
proved) that if you restrict the input signal’s bandwidth 
to less than one-half the sampling frequency then no 
errors due to aliasing are possible. So bandlimiting your 
input to no more than one-half the sampling frequency 
guarantees no aliasing. Cool – only it’s not possible.

In order to satisfy the Shannon limit (as it is called 
– Harry gets a “criteria” and Claude gets a “limit”) 
you must have the proverbial brick-wall, i.e., infinite-
slope filter. Well, this isn’t going to happen, not in this 
universe. You cannot guarantee that there is absolutely 
no signal (or noise) greater than the Nyquist frequency. 
Fortunately there is a way around this problem. In fact, 
you go all the way around the problem and look at it 
from another direction. 

If you cannot restrict the input bandwidth so alias-
ing does not occur, then solve the problem another 
way: Increase the sampling frequency until the aliasing 
products that do occur, do so at ultrasonic frequencies, 
and are effectively dealt with by a simple single-pole 
filter. This is where the term “oversampling” comes in. 
For full spectrum audio the minimum sampling fre-
quency must be 40 kHz, giving you a useable theoreti-
cal bandwidth of 20 kHz – the limit of normal human 
hearing. Sampling at anything significantly higher 
than 40 kHz is termed oversampling. In just a few years 
time, we have seen the audio industry go from the 
CD system standard of 44.1 kHz, and the pro audio 
quasi-standard of 48 kHz, to 8-times and 16-times 
oversampling frequencies of  around 350 kHz and 700 
kHz respectively. With sampling frequencies this high, 
aliasing  is no longer an issue.

Okay. So audio signals can be changed into digital 
words (digitized) without loss of information, and with 
no aliasing effects, as long as the sampling frequency is 
high enough. How is this done?

Quantization
Quantizing is the process of determining which of the 
possible values (determined by the number of bits or 
voltage reference parts) is the closest value to the cur-
rent sample – i.e., you are assigning a quantity to that 
sample. Quantizing, by definition then, involves decid-
ing between two values and thus always introduces 
error. How big the error, or how accurate the answer, 
depends on the number of bits. The more bits, the bet-
ter the answer. The converter has a reference voltage 
which is divided up into 2n parts, where n is the num-
ber of bits. Each part represents the same value. Since 
you cannot resolve anything smaller than this value, 
there is error. There is always error in the conversion 
process. This is the accuracy issue. 

The number of bits determines the converter ac-
curacy. For 8-bits, there are 28 = 256 possible levels as 
shown in Figure 3. Since the signal swings positive and 
negative there are 128 levels for each direction. Assum-
ing a ±5 V reference3, this makes each division, or bit, 
equal to 39 mV (5/128 = .039). Hence, an 8-bit system 
cannot resolve any change smaller than 39 mV. This 
means a worst case accuracy error of 0.78%. Table 1 
compares the accuracy improvement gained by 16-bit, 
20-bit and 24-bit systems along with the reduction in 
error. (Note: this is not the only way to use the refer-
ence voltage. Many schemes exist for coding, but this 
one nicely illustrates the principles involved.) Each 
step size (resulting from dividing the reference into 

Figure 3. 8-Bit Resolution
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-5V

2 =128 DIVISIONS7

2 =128 DIVISIONS7

2 =256 DIVISIONS8

~ 39 mV / DIV
(0.0390625 V / DIV

# Bits # Divisions Resolution/Div Max % Error Max PPM Error

8 27=128 39 mV 0.78 7812.00
16 215=32,768 153 µV 0.003 30.50
20 219=524,288 9.5 µV 0.00019 1.90
24 223=8,388,608 0.6 µV 0.000012 0.12

Table 1. Quantization Steps For ±5 Volts Reference

2 See Clive Maxfield’s book Bebob to the Boolean Boogie (High-
Text ISBN 1-878707-22-1, Solana Beach, CA, 1995) for the best 
treatment.
3 A single +5 V supply is probably more common today, but this 
illustrates the point.
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the number of equal parts dictated by the number of 
bits) is equal and is called a quantizing step (also called 
quantizing interval – see Figure 4). Originally this step 
was termed the LSB (least significant bit) since it equals 
the value of the smallest coded bit, however it is an 
illogical choice for mathematical treatments and has 
since be replaced by the more accurate term quantizing 
step.

The error due to the quantizing process is called 
quantizing error (no definitional stretch here). As 
shown earlier, each time a sample is taken there is er-
ror. Here’s the not obvious part: the quantizing error 
can be thought of as an unwanted signal which the 
quantizing process adds to the perfect original. An 
example best illustrates this principle. Let the sampled 
input value be some arbitrarily chosen value, say, 2 
volts. And let this be a 3-bit system with a 5 volt refer-
ence. The 3-bits divides the reference into 8 equal parts 
(23 = 8) of 0.625 V each, as shown in Figure 4. For the 2 
volt input example, the converter must choose between 
either 1.875 volts or 2.50 volts, and since 2 volts is clos-
er to 1.875 than 2.5, then it is the best fit. This results 
in a quantizing error of -0.125 volts, i.e., the quantized 
answer is too small by 0.125 volts. If the input signal 
had been, say, 2.2 volts, then the quantized answer 
would have been 2.5 volts and the quantizing error 
would have been +0.3 volts, i.e., too big by 0.3 volts. 

These alternating unwanted signals added by quan-
tizing form a quantized error waveform, that is a kind 

Figure 4. Quantization – 3-Bit, 5V Example 

of additive broadband noise that is generally uncor-
related with the signal and is called quantizing noise. 
Since the quantizing error is essentially random (i.e. 
uncorrelated with the input) it can be thought of like 
white noise (noise with equal amounts of all frequen-
cies). This is not quite the same thing as thermal 
noise, but it is similar. The energy of this added noise 
is equally spread over the band from dc to one-half the 
sampling rate. This is a most important point and will 
be returned to when we discuss delta-sigma converters 
and their use of extreme oversampling.

Successive Approximation
Successive approximation is one of the earliest and 
most successful analog-to-digital conversion tech-
niques. Therefore, it is no surprise it became the initial 
A/D workhorse of the digital audio revolution. Succes-
sive approximation paved the way for the delta-sigma 
techniques to follow. 

The heart of any A/D circuit is a comparator. A com-
parator is an electronic block whose output is deter-
mined by comparing the values of its two inputs. If the 
positive input is larger than the negative input then 
the output swings positive, and if the negative input 
exceeds the positive input, the output swings negative. 
Therefore if a reference voltage is connected to one 
input and an unknown input signal is applied to the 
other input, you now have a device that can compare 
and tell you which is larger. Thus a comparator gives 
you a “high output” (which could be defined to be a “1”) 
when the input signal exceeds the reference, or a “low 
output” (which could be defined to be a “0”) when it 
does not. A comparator is the key ingredient in the suc-
cessive approximation technique as shown in Figures 
5A & 5B.

The name successive approximation nicely sums up 
how the data conversion is done. The circuit evaluates 
each sample and creates a digital word representing 
the closest binary value. The process takes the same 
number of steps as bits available, i.e., a 16-bit system 
requires 16 steps for each sample. The analog sample is 
successively compared to determine the digital code, 
beginning with the determination of the biggest (most 
significant) bit of the code. 

The description given in Daniel Sheingold’s Analog-
Digital Conversion Handbook (see References) offers 
the best analogy as to how successive approxima-
tion works. The process is exactly analogous to a gold 
miner’s assay scale, or a chemical balance as seen in 
Figure 5A. This type of scale comes with a set of gradu-

5.00V Reference Voltage

4.375V

23 = 8 quantizing steps
Q = 0.625V/step3.75V

All analog voltages within
3.125V the same quantizing step are

assigned the same binary code

2.50V

2.0V example
1.875V 0.125V quantizing error

1.25V

+½ Q max quantizing error
0.625V

–½ Q max quantizing error

0.00V
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ated weights, each one half the value of the preceding 
one, such as 1 gram, ½ gram, ¼ gram, 1/8 gram, etc. You 
compare the unknown sample against these known 
values by first placing the heaviest weight on the scale. 
If it tips the scale you remove it; if it does not you leave 
it and go to the next smaller value. If that value tips the 
scale you remove it, if it does not you leave it and go 
to the next lower value, and so on until you reach the 
smallest weight that tips the scale. (When you get to 
the last weight, if it does not tip the scale, then you put 
the next highest weight back on, and that is your best 
answer.) The sum of all the weights on the scale repre-
sents the closest value you can resolve. 

In digital terms, we can analyze this example by say-
ing that a “0” was assigned to each weight removed, and 
a “1” to each weight remaining – in essence creating a 
digital word equivalent to the unknown sample, with 
the number of bits equaling the number of weights. 
And the quantizing error will be no more than ½ the 
smallest weight (or ½ quantizing step).

As stated earlier the successive approximation 
technique must repeat this cycle for each sample. Even 
with today’s technology, this is a very time consuming 
process and is still limited to relatively slow sampling 
rates, but it did get us into the 16-bit, 44.1 kHz digital 
audio world.

PCM (Pulse Code Modulation) and  
PWM (Pulse Width Modulation)
The successive approximation method of data conver-
sion is an example of pulse code modulation, or PCM. 
Three elements are required: sampling, quantizing, and 
encoding into a fixed length digital word. The reverse 
process reconstructs the analog signal from the PCM 
code. The output of a PCM system is a series of digital 
words, where the word-size is determined by the avail-
able bits. For example the output is a series of  8-bit 
words, or 16-bit words, or 20-bit words, etc., with each 
word representing the value of one sample.

Pulse width modulation, or PWM is quite simple 
and quite different from PCM. Look at Figure 6. In a 
typical PWM system, the analog input signal is applied 
to a comparator whose reference voltage is a triangle-
shaped waveform whose repetition rate is the sampling 
frequency. This simple block forms what is called an 
analog modulator. 

A simple way to understand the “modulation” pro-
cess is to view the output with the input held steady 
at zero volts. The output forms a 50% duty cycle (50% 
high, 50% low) square wave. As long as there is no in-
put, the output is a steady square wave. As soon as the 

Figure 5B. Successive Approximation A/D Converter

Figure 5A. Successive Approximation Example
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input is non-zero, the output becomes a pulse-width 
modulated waveform. That is, when the non-zero input 
is compared against the triangular reference voltage, 
it varies the length of time the output is either high or 
low. 

For example, say there was a steady DC value ap-
plied to the input. For all samples when the value of 
the triangle is less than the input value, the output 
stays low, and for all samples when it is greater than 
the input value, it changes state and remains high. 
Therefore, if the triangle starts higher than the input 
value, the output goes high; at the next sample period 
the triangle has increased in value but is still more than 
the input, so the output remains high; this continues 
until the triangle reaches its apex and starts down 
again; eventually the triangle voltage drops below the 
input value and the output drops low and stays there 
until the reference exceeds the input again. The result-
ing pulse-width modulated output, when averaged over 
time, gives the exact input voltage. For example if the 
output spends exactly 50% of the time with an output 
of 5 volts, and 50% of the time at 0 volts, then the aver-
age output would be exactly 2.5 volts. 

This is also the core principle of most Class-D 
switching power amplifiers. The analog input is con-
verted into a variable pulse-width stream used to 
turn-on the output switching transistors. The analog 
output voltage is simply the average of the on-times of 
the positive and negative outputs. Pretty amazing stuff 
from a simple comparator with a triangle waveform 
reference.

Another way to look at this, is that this simple device 
actually codes a single bit of information, i.e., a com-
parator is a 1-bit A/D converter. PWM is an example of 
a 1-bit A/D encoding system. And a 1-bit A/D encoder 
forms the heart of delta-sigma modulation.

4 The name delta-sigma modulation was coined by Inose and Yasuda at the University of Tokyo in 1962, but due to a translation misun-
derstanding, words were interchanged and taken to be sigma-delta. Both names are still used, but only delta-sigma is actually correct.
5 Leung, K., et al., “A 120 dB dynamic Range, 96 kHz, Stereo 24-bit Analog-to-Digital Converter,” presented at the 102nd Convention of 
the Audio Engineering Society, Munich, March 22-25, 1997.

Delta-Sigma Modulation & Noise Shaping
After nearly thirty years, delta-sigma modulation (also 
sigma-delta4) has only recently emerged as the most 
successful audio A/D converter technology. It waited 
patiently for the semiconductor industry to develop the 
technologies necessary to integrate analog and digital 
circuitry on the same chip. Today’s very high-speed 
“mixed-signal” IC processing allows the total integra-
tion of all the circuit elements necessary to create 
delta-sigma data converters of awesome magnitude5.

How the name came about is interesting. Another 
way to look at the action of the comparator is that the 
1-bit information tells the output voltage which direc-
tion to go based upon what the input signal is doing. It 
looks at the input and compares it against its last look 
(sample) to see if this new sample is bigger or smaller 
than the last one – that is the information transfer: big-
ger or smaller, increasing or decreasing. If it is bigger 
than it tells the output to keep increasing, and if it is 
smaller it tells the output to stop increasing and start 
decreasing. It merely reacts to the change. Mathemati-
cians use the Greek letter “delta” (symbol ∆) to stand 
for deviation or small incremental change, which is 
how this process came to be known as “delta modula-
tion.” The “sigma” part came about by the significant 
improvements made from summing or integrating the 
signal with the digital output before performing the 
delta modulation. Here again, mathematicians use the 
Greek letter “sigma” (symbol Σ) to stand for summing, 
so “delta-sigma” became the natural name.

Essentially a delta-sigma converter digitizes the 
audio signal with a very low resolution (1-bit) A/D 
converter at a very high sampling rate. It is the overs-
ampling rate and subsequent digital processing that 
separates this from plain delta modulation (no sigma).

Referring back to the earlier topic of quantizing 
noise it is possible to calculate the theoretical sine wave 
signal-to-noise (S/N) ratio (actually the signal-to-error 
ratio, but for our purposes it’s close enough to com-
bine) of an A/D converter system knowing only n, the 
number of bits. Doing a bit (sorry) of math shows that 
the value of the added quantizing noise relative to a 
maximum (full-scale) input equals 6.02n + 1.76 dB for 
a sine wave. For example, a perfect 16-bit system will 
have a S/N ratio of 98.1 dB, while a 1-bit delta-modula-
tor A/D converter, on the other hand, will have only 
7.78 dB! 
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To get an intuitive feel for this, consider that since 
there is only 1-bit, the amount of quantization error 
possible is as much as ½-bit. That is, since the converter 
must choose between the only two possibilities of 
maximum or minimum values, then the error can be as 
much as half of that. And since this quantization error 
shows up as added noise, then this reduces the S/N to 
something on the order of around 2:1 or 6 dB. 

One attribute shines true above all others for delta-
sigma converters and makes them a superior audio 
converter: simplicity. The simplicity of 1-bit technology 
makes the conversion process very fast, and very fast 
conversions allows use of extreme oversampling. And 
extreme oversampling pushes the quantizing noise and 
aliasing artifacts way out to megawiggle-land, where it 
is easily dealt with by digital filters (typically 64-times 
oversampling is used, resulting in a sampling frequency 
on the order of 3 MHz).

To get a better understanding of how oversampling 
reduces audible quantization noise, we need to think in 
terms of noise power. From physics you may remember 
that power is conserved – i.e., you can change it, but 
you cannot create or destroy it; well, quantization noise 
power is similar. With oversampling the quantization 
noise power is spread over a band that is as many times 
larger as is the rate of oversampling. For example, 
for 64-times oversampling, the noise power is spread 
over a band that is 64 times larger, reducing its power 
density in the audio band by 1/64

th. See Figures 7A-E for 
example.

Noise shaping helps reduce in-band noise even more. 
Oversampling pushes out the noise, but it does so uni-
formly, that is, the spectrum is still flat. Noise shaping 
changes that. Using very clever complex algorithms 
and circuit tricks, noise shaping contours the noise so 
that it is reduced in the audible regions and increased 
in the inaudible regions. Conservation still holds, the 
total noise is the same, but the amount of noise present 
in the audio band is decreased while simultaneously in-
creasing the noise out-of-band – then the digital filter 
eliminates it. Very slick.

As shown in Figure 8, a delta-sigma modulator con-
sists of three parts: an analog modulator, a digital filter 
and a decimation circuit. The analog modulator is the 
1-bit converter discussed previously with the change 
of integrating the analog signal before performing the 
delta modulation. (The integral of the analog signal is 
encoded rather than the change in the analog signal, 
as is the case for traditional delta modulation.) Overs-
ampling and noise shaping pushes and contours all the 
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bad stuff (aliasing, quantizing noise, etc.) so the digital 
filter suppresses it. The decimation circuit, or decima-
tor, is the digital circuitry that generates the correct 
output word length of 16-, 20-, or 24-bits, and restores 
the desired output sample frequency. It is a digital 
sample rate reduction filter and is sometimes termed 
downsampling (as opposed to oversampling) since it is 
here that the sample rate is returned from its 64-times 
rate to the normal CD rate of 44.1 kHz, or perhaps to 
48 kHz, or even 96 kHz, for pro audio applications. 
The net result is much greater resolution and dynamic 
range, with increased S/N and far less distortion com-
pared to successive approximation techniques – all at 
lower costs. 

Figure 8. Delta-Sigma A/D Converter

LP FILTER DIGITAL FILTER

COMPARATOR

DAC

& DECIMATOR

+

– –

+ 1-BIT

n-BIT WORD

INPUT

6 This section is included because of the confusion surrounding the 
term. However, with the advances made in A/D converter resolu-
tion technology, the need for dither in A/D converters has essen-
tially disappeared, making this section more of historical interest. 
Dither is still necessary for word-length reduction in other digital 
processing.
7 Thanks to Bob Moses for this great analogy.

Dither – Not All Noise Is Bad6 

Now that oversampling helped get rid of the bad noise, 
let’s add some good noise – dither noise. 

Just what is dither? Aside from being a funny sound-
ing word, it is a wonderfully accurate choice for what is 
being done. The word “dither” comes from a 12th cen-
tury English term meaning “to tremble.” Today it means 
to be in a state of indecisive agitation, or to be nervously 
undecided in acting or doing. Which, if you think about 
it, is not a bad description of noise.

Dither is one of life’s many trade-offs. Here the 
trade-off is between noise and resolution. Believe it 
or not, we can introduce dither (a form of noise) and 
increase our ability to resolve very small values. Values, 
in fact, smaller than our smallest bit — now that’s a 
good trick. Perhaps you can begin to grasp the concept 
by making an analogy between dither and anti-lock 
brakes.7  Get it?

No? Okay, here’s how this analogy works: With 
regular brakes, if you just stomp on them, you probably 
create an unsafe skid situation for the car — not a good 
idea. Instead, if you rapidly tap the brakes, you control 
the stopping without skidding. We shall call this “dith-
ering the brakes.” What you have done is introduce 
“noise” (tapping) to an otherwise rigidly binary (on or 
off ) function. 

So by “tapping” on our analog signal, we can im-
prove our ability to resolve it. By introducing noise, the 
converter rapidly switches between two quantization 
levels, rather than picking one or the other, when nei-
ther is really correct. Sonically, this comes out as noise, 
rather than a discrete level with error. Subjectively, 
what would have been perceived as distortion is now 
heard as noise. 

Lets look at this is more detail. The problem dither 
helps to solve is that of quantization error caused by 
the data converter being forced to choose one of two 
exact levels for each bit it resolves. It cannot choose be-
tween levels, it must pick one or the other. With 16-bit 
systems, the digitized waveform for high frequency, low 
signal levels looks very much like a steep staircase with 
few steps. An examination of the spectral analysis of 
this waveform reveals lots of nasty sounding distortion 
products. We can improve this result either by adding 
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Figure 9. A. Input Signal. B. Output Signal [no dither]. C. Total Error Signal [no dither]. D. Power Spectrum of Output Signal [no dither]. 

E. Input Signal. F. Output Signal [with dither]. G. Total Error Signal [with dither]. H. Power Spectum of Output Signal [with dither].8  

more bits, or by adding dither. Prior to 1997, adding 
more bits for better resolution was straightforward, 
but expensive, thereby making dither an inexpensive 
compromise; today, however, there is less need.

The dither noise is added to the low-level signal 
before conversion. The mixed noise causes the small 
signal to jump around, which causes the converter to 
switch rapidly between levels rather than being forced 
to choose between two fixed values. Now the digitized 

waveform still looks like a steep staircase, but each 
step, instead of being smooth, is comprised of many 
narrow strips, like vertical blinds. The spectral analysis 
of this waveform shows almost no distortion products 
at all, albeit with an increase in the noise content. The 
dither has caused the distortion products to be pushed 
out beyond audibility, and replaced with an increase in 
wideband noise. Figure 9 diagrams this process.
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A/D Converter Measuring Bandwidth Note
Due to the oversampling and noise shaping character-
istics of delta-sigma A/D converters, certain measure-
ments must use the appropriate bandwidth or inac-
curate answers result. Specifications such as signal-
to-noise, dynamic range, and distortion are subject 
to misleading results if the wrong bandwidth is used. 
Since noise shaping purposely reduces audible noise 
by shifting the noise to inaudible higher frequencies, 
taking measurements over a bandwidth wider than 20 
kHz results in answers that do not correlate with the 
listening experience. Therefore, it is important to set 
the correct measurement bandwidth to obtain mean-
ingful data.

Life After 16 – A Little Bit Sweeter
Current digital recording standards allow for only 16-
bits, yet it is safe to say that for all practical purposes 
16-bit technology is history9. Everyone who can afford 
the up-grade is using 20- and 24-bit data converters 
and dithering (vs. truncating) down to 16-bits. Here is 
what is gained by using 20-bits:

•   24 dB more dynamic range
•   24 dB less residual noise
•   16:1 reduction in quantization error
•   Improved jitter (timing stability) performance

And if it is 24-bits, add another 24 dB to each of the 
above and make it a 256:1 reduction in quantizing error, 
with essentially zero jitter!

As stated in the beginning of this note, with today’s 
technology, analog-to-digital-to-analog conversion is 
the element defining the sound of a piece of equipment, 
and if it’s not done perfectly then everything that fol-
lows is compromised.

With 20-bit high-resolution conversion, low signal-
level detail is preserved. The improvement in fine detail 
shows up most noticeably by reducing the quantization 
errors of low-level signals. Under certain conditions, 
these coarse data steps can create audio passband har-
monics not related to the input signal. Audibility of this 
quantizing noise is much higher than in normal analog 
distortion, and is also known as granulation noise. 20-
bits virtually eliminates granulation noise. Commonly 
heard examples are musical fades, like reverb tails and 
cymbal decay. With only 16-bits to work with, they 
don’t so much fade as collapse in noisy chunks.

Where it really matters most is in measuring very 
small things. It doesn’t make much difference when 
measuring big things. If your ruler measures in whole 
inch increments and you are measuring something 10 
feet long, the most you can be off is ½ inch. Not a big 
deal. However, if what you’re measuring is less than an 
inch, and your error can be as much as ½ inch, well, 
now you’ve got an accuracy problem. This is exactly the 
problem in digitizing small audio signals. Graduating our 
audio digital ruler finer and finer means we can accu-
rately resolve smaller and smaller signal levels, allowing 
us to capture the musical details. Getting the exact right 
answer does result in better reproduction of music. 

9 Historical Footnote: The reason the British divided up the pound 
into 16 ounces is not as arbitrary as some might suspect, but, 
rather, was done with great calculation and foresightedness. At 
the time, you see, technology had advanced to where 4-bit systems 
were really quite the thing. And, of course, 4-bits allows you to di-
vide things up into 16 different values (since 24 = 16). So one pound 
was divided up into 16 equal parts called “ounces,” for reasons to 
be explained at another time. Similarly, the roots of a common 
American money term come from a simple 3-bit system. A 3-bit 
system allows eight values (since 23 = 8), so if you divide up a dollar 
into eight parts, each part is, of course, 12.5 cents. Therefore you 
would call two parts (or two-bits, as we Americans say) a “quarter” 
— obvious.
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