
Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 1 of 10

Data Structures:
Abbreviations used:
$: signifies hexadecimal number
ADDR: device address
CHNUM: channel number code
COMSTAT: communications status code
DCL: device control language
DT: Device-type code (predefined)
ID: Manufacturer’s ID code (predefined)
MEMNUM: memory number code
OPSTAT: operational status code
RPE 228: Dual channel programmable one-third octave equalizer
SPL: stored parameter list (product dependent)

RPE 228 Stored Parameter List (SPL):
Index Name Encoding Method (see next section)
0 31.5 Hz band Gain 1
1 40 Hz band Gain 1
2 50 Hz band Gain 1
3 63 Hz band Gain 1
4 80 Hz band Gain 1
5 100 Hz band Gain 1
6 125 Hz band Gain 1
7 160 Hz band Gain 1
8 200 Hz band Gain 1
9 250 Hz band Gain 1
10 315 Hz band Gain 1
11 400 Hz band Gain 1
12 500 Hz band Gain 1
13 630 Hz band Gain 1
14 800 Hz band Gain 1
15 1 kHz band Gain 1
16 1.25 kHz band Gain 1
17 1.6 kHz band Gain 1
18 2 kHz band Gain 1
19 2.5 kHz band Gain 1
20 3.15 kHz band Gain 1
21 4 kHz band Gain 1
22 5 kHz band Gain 1
23 6.3 kHz band Gain 1
24 8 kHz band Gain 1
25 10 kHz band Gain 1
26 12.5 kHz band Gain 1
27 16 kHz band Gain 1
28 input gain Gain 2
29 output gain Gain 2
30 mute OFF = 0, ON = 1 (muted)
31 low cut Low Cut
32 high cut High Cut
33 bypass OFF = 0, ON = 1 (bypassed)

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 2 of 10

Encoding Methods for RPE 228 Stored Parameter List:
Gain 1 (0.5 dB steps):
$00 = 0.0 dB, $01 = +0.5 dB, $02 = +1.0 dB, etc., $14 (maximum value) = +10.0 dB
$FF = 0.5 dB, $FE = 1 dB, etc., $EC (minimum value) = 10 dB
(Two’s complement for negative gain values)

Gain 2 (1 dB steps):
$00 = 0 dB, $01 = +1 dB, $02 = +2 dB, etc., $0C (maximum value) = +12 dB
$FF = 1 dB, $FE = 2 dB, etc., $F4 (minimum value) = 12 dB
(Two’s complement for negative gain values)

Low Cut (10 Hz steps):
$00 (minimum value) = OFF, $01 = 10 Hz, $02 = 20 Hz, etc., $14 (maximum value) = 200 Hz

High Cut (1 kHz steps):
$00 (minimum value) = OFF, $01 = 20 kHz, $02 = 19 kHz, etc., $14 (maximum value) = 1 kHz

RPE 228 Global Parameters:
Type: Bytes: Description:
Unit name 16 NULL terminated ASCII string if less than 16 characters long. Otherwise, omit NULL.
Ch 1 name 16 NULL terminated ASCII string if less than 16 characters long. Otherwise, omit NULL.
Ch 2 name 16 NULL terminated ASCII string if less than 16 characters long. Otherwise, omit NULL.
Unit lock flag 1 1 if unit is locked (read-only)
Elapsed time 4 Time of use in seconds (read-only) (Note: This is unsigned long integer. If bit 31 is set, it

means that an error occurred, e.g. someone removed the EEPROM while the unit was
powered, and that time was restarted from that point.

Reserved 4 Normally set to 0,0,0,0 (factory use only)

Device address (ADDR):
Valid address range is 1 through 250 (0, 251, 252, 253, 254, and 255 are reserved)

Device-type code (DT):
$00 = dual channel one-third octave equalizer (for Rane RPE 228)

Manufacturer’s identification code (ID):
$08 = Rane Corporation

Channel number codes (CHNUM):
$01 = device channel #1, $02 = device channel #2, etc. (RPE 228 has two channels)

Memory number codes (MEMNUM):
$00 = live or working memory, $01 = preset memory #1, $02 = preset memory #2, ... , $10 = preset memory #16 (RPE 228 has
16 preset memories per channel)

Communications status codes (COMSTAT):
$00 = no error
$01 = invalid data
$02 = invalid command code
$03 = device locked
$04 = device not locked
$05 = channel(s) muted

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 3 of 10

$06 = channel(s) not muted
$07 = checksum error

Operational status codes (OPSTAT):
00 = no error

RW 232 Commands:
Send data to channel (81 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $28 (number of data bytes to follow including checksum)
Transmit $81 (command code)
Transmit CHNUM
Transmit MEMNUM
Transmit 2 bytes; starting param byte index (See Note 5)
Transmit SPL
Transmit Checksum
Get COMSTAT

Program channel from memory (82 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $04 (number of data bytes to follow including checksum)
Transmit $82 (command code)
Transmit CHNUM (See Note 4)
Transmit MEMNUM
Transmit Checksum
Get COMSTAT

Program all channels of all devices from memory (82 hex):
Transmit $FB $00 $FB $00
Transmit $00 $03 (number of data bytes to follow including checksum)
Transmit $82 (command code)
Transmit MEMNUM
Transmit Checksum

Lock device (85 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $85 (command code)
Transmit $79 (Checksum)
Get COMSTAT

Unlock device (86 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 4 of 10

Transmit $86
Transmit $78 (Checksum)
Get COMSTAT

Mute channel (87 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $03 (number of data bytes to follow including checksum)
Transmit $87 (command code)
Transmit CHNUM (See Note 4)
Transmit Checksum
Get COMSTAT

Mute all channels of all devices (87 hex):
Transmit $FB $00 $FB $00
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $87 (command code)
Transmit $77 (Checksum)

Unmute channel (88 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $03 (number of data bytes to follow including checksum)
Transmit $88 (command code)
Transmit CHNUM (See Note 4)
Transmit Checksum
Get COMSTAT

Unmute all channels of all devices (88 hex):
Transmit $FB $00 $FB $00
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $88 (command code)
Transmit $76 (Checksum)

Get OPSTAT (00 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $00 (command code)
Transmit $FE (Checksum)
Get OPSTAT
Get memory source number for channel 1
Get memory source number for channel 2
Get working/stored flag (See Note 6)
Get working/dirty flag (See Note 7)
Get Checksum
Get COMSTAT

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 5 of 10

Flash COM LEDs on all units (00 hex):
Transmit $FB $00 $FB $00
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $00 (command code)
Transmit $FE (Checksum)

Get data from channel (01 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $08 (number of data bytes to follow through start param)
Transmit $01(command code)
Transmit CHNUM
Transmit MEMNUM
Transmit 2 bytes; starting param byte (See Note 5)
Transmit 2 bytes; number of param bytes (See Note 5)
Transmit Checksum (See Note 3)
Get SPL
Get Checksum (for SPL)
Get COMSTAT

Get device-type and manufacturer’s identification codes (02 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $02 (command code)
Transmit $FC (Checksum)
Get COMSTAT

Send globals (8C hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $3B (number of data bytes to follow including checksum)
Transmit $8C (command code)
Transmit Global Parameters
Transmit Checksum
Get COMSTAT

Get globals (03 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $03 (command code)
Transmit $FB $FB (Checksum, See Note 1)
Get Global Parameters
Get Checksum (for Global Parameters)
Get COMSTAT

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 6 of 10

Get device serial/identification number (04 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $04 (command code)
Transmit $FA (Checksum)
Get 3-byte number, MSB first
Get Checksum (for serial ID)
Get COMSTAT

Get software revision (05 hex):
Transmit ADDR header ($FB xx FB xx, where xx = ADDR)
Get DT
Get ID
Transmit $00 $02 (number of data bytes to follow including checksum)
Transmit $05 (command code)
Transmit $F9 (Checksum)
Get hardware revision
Get firmware revision (× 10)
Get Checksum (for hardware and firmware revisions)
Get COMSTAT

Notes:
1. When the value $FB occurs anywhere except in an ADDR header, it is repeated.
2. The data size is the number of bytes, prior to the $FB repetition, between the command code and the

checksum inclusively.
3. The checksum applies to the “data size” bytes through the byte immediately before the checksum,

inclusive. Repeated $FB’s are counted only once. The sum is the twos complement negative of the
LS Byte of the arithmetic sum. For example, if the sum is $1234, the checksum is $CC.

4. CHNUM is normally 1 or 2 for a 2-channel device. A CHNUM of 0 is allowed for this message and
means both channels.

5. The parameter bytes are indexed using a 2-byte number (MSB first) starting with 0. The number of
parameter bytes also uses a 2-byte number with the same format. When sending parameters, the
number sent is determined by the data size.

6. The working/stored flag is set if the working memory for either channel doesn’t match the stored
memory from which it originated.

7. The working/dirty flag is set when the RPE is powered up, or when a memory is recalled. It is cleared
when the working parameters are sent or received.

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 7 of 10

RW 232 Communications Interface:
RW 232 is loosely based on PA-422. One key hardware difference is that RW 232 does not utilize hardware
handshaking via DTR/DSR. The beginning of a message always takes the form:

 $FB xx FB xx (where xx = ADDR)

Note: When $FB appears in the body of the message, it is always repeated.

Input port: 9-pin female input port (DB-9F) on device

Output port: 9-pin male output port (DB-9M) on device (for serial linking to the input port on the next
device. Up to 250 devices can be linked in this manner.)

Device address means: 8 position DIP switch on device (valid device addresses are 1 through 250)

Baud Rate: 19.2 kilobaud

Character frame bits: 1 start bit, 8 data bits, 1 parity bit (even), and 1 stop bit

Cabling: Use standard RS-232 serial printer or modem cables.

Warning: NULL modem cables will not work!

Host or computer interface: Standard PC serial COM port (DB-9M, or DB-25M with adapter)

Note: Only three lines, Tx, Rx, and Ground, are used.

References:
Rodgers, Robert L., “PA-422 Communications Interface and Device Control Language”, Journal of the Audio Engineering
Society, Vol. 38, Number 9, 1990 September, pp. 619 639.

Audio Engineering Society, Inc., “AES Recommended practice for sound-reinforcement systems Communications interface
(PA-422)”, Journal of the Audio Engineering Society, Vol. 39, Number 9, 1991 September, pp. 664 679.

Standards documents: AES15-1991 (Audio Engineering Society)
ANSI S4.49-1991 (American National Standards Institute)

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 8 of 10

//--
// Example Packet Expansion code for RW 232 Messages
//
// Rane Corporation
//
// 09-10-96 - Devin Cook (Derived from RW232.CPP code)
//--

// This code only deals with the Body of an RW 232 message (Command/Data)
//
// The steps needed to fully communicate an RW 232 are:
//
// 1. Send the Address: [FB xx FB xx]
// 2. Get the returned Device Type and Device ID flags
// 3. Send the FB expanded Body
// 4. Get and check the returned ComStat byte

// Take a simple command and expand it into a full packet.
//
// Input:
// Buff - BYTE array with the unexpanded message and lots of extra room
// MsgLen - Unexpanded message length
//
// Steps required are:
// 1. Add Packet size. This is simply the Command length + 1 for the checksum
// 2. Duplicate 0xFBs
// 3. Calculate Checksum
// 4. Add Checksum to packet (Check for a 0xFB Checksum!)
// 5. Copy Packet back to the buffer
// 6. Return the new Packet Size
//
// Note: The buffer must be large enough to accept the expanded data.
// No checking is done to verify it is, so be careful!

// A packet into this routine consists of the one byte Command and any Data

int CmdToPacket(BYTE Buff[], int MsgLen)
{

BYTE L_MSB = ((MsgLen+1) >> 8) & 0xFF; // Grab MSB of Size
BYTE L_LSB = (MsgLen+1) & 0xFF; // Grab LSB of Size

// FBs is the number of 0xFB bytes in the messages
int FBs = 0;

// Don't forget to check message length for FBs
if (L_MSB == 0xFB)

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 9 of 10

FBs ++;

if (L_LSB == 0xFB)
FBs ++;

// Calculate Checksum of Message Length bytes along with bytes in the packet
int CheckSum = L_MSB + L_LSB;

for (int x=0;x<L;x++)
{

CheckSum += Buff[x];
if (Buff[x] == 0xFB)

FBs ++;
}

CheckSum = (256-CheckSum) & 0xFF;

// Don't forget to up the FB count for a FB checksum!
if (CheckSum == 0xFB)

FBs ++;

// New Length is:
// 2 (For 2 length bytes) +
// L (Old message Length) +
// Repeated FBs count +
// 1 (For CheckSum)

int NewLen = 2 + MsgLen + FBs + 1;

// Create a temporary holding tank for Packet Expansion
BYTE Packet[MAX_CMD_BUF];

BYTE *Ptr = Packet;

// Stick message length in the packet (Watching for FBs of course)
*(Ptr++) = L_MSB ;
if (L_MSB == 0xFB)

*(Ptr++) = 0xFB;

*(Ptr++) = L_LSB ;
if (L_LSB == 0xFB)

*(Ptr++) = 0xFB;

// Expand the original packet into the new buffer
for (x=0;x<L;x++)
{

Rane Corporation RW 232 Device Control Language
Mukilteo, Washington File: rw232dcl Revision date: September 10, 1996

RW 232 Device Control Language Page 10 of 10

*(Ptr++) = Buff[x];
if (Buff[x] == 0xFB)
*(Ptr++) = 0xFB;

}

// Add the Checksum byte (or Bytes if Checksum == FB)
*(Ptr++) = CheckSum ;
if (CheckSum == 0xFB)

*(Ptr++) = 0xFB;

// Copy the expanded packet back into the original buffer
memcpy(Buff,Packet,NewLen);

return NewLen;
}

