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ABSTRACT 

Equalizers with fixed frequency filter bands, although successful, have historically had a combined frequency 
response that at best only roughly matches the band amplitude settings.  This situation is explored in practical terms 
with regard to equalization methods, filter band interference, and desirable frequency resolution.  Fixed band 
equalizers generally use second-order discrete filters.  Equalizer band interference can be better understood by 
analyzing the complex frequency response of these filters and the characteristics of combining topologies.  Response 
correction methods may avoid additional audio processing by adjusting the existing filter settings in order to 
optimize the response.  A method is described which closely approximates a linear band interaction by varying 
bandwidth, in order to efficiently correct the response. 

 

1. BACKGROUND 

The audio graphic equalizer has evolved into a set of 
around thirty filters at fixed frequencies, covering the 
audio range.  The operator has adjusted the level of each 
individually, either to correct a magnitude response 
variation, or to create one intentionally.  This degree of 
control has remained popular despite the recent 
advances of technology.  Digital Signal Processing 
(DSP) has made it practical to provide many times this 
resolution, to the point where the term arbitrary 
magnitude response is considered applicable. 

As is well known, equalization has phase shift as a 
mathematical requirement.  Phase shift has not always 

been considered as important as magnitude response 
because it was less audible.  Still, studies have 
confirmed that it is audible in some situations [1,2].  
Minimum phase is often chosen for its economy and 
because it is appropriate for correcting a system with 
minimum phase characteristics, which may be cancelled 
by minimum phase filtering without adding time delay 
[3].  Minimum phase filters might also be appropriate 
for magnitude correction of system responses with 
unknown phase characteristics.  Today, mainly due to 
DSP, non-minimum phase shift designs have become 
more practical, and linear phase with its constant group 
delay is the most common example. 

The graphic equalizer with front panel sliders 
displaying a response curve may be easily 
misunderstood as displaying the actual magnitude 
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response.  Although discrete filters can be designed with 
narrow bandwidths, even approaching a filter shape 
with a flat top and steep cutoff is expensive, so in 
practice each filter has an effect over a wider range of 
frequencies than it is intended to affect.  The filter 
response curves still have significant magnitude at 
neighboring filter band frequencies. In practice, each 

filter significantly affects no more than the first few 
neighboring frequency bands.  Figure 1 shows the 
combined response for several topologies.  The resulting 
frequency response then doesn’t match the settings (at 
band center frequencies). The nature of the combined 
response depends on the filter combining topology. 

Figure 1:  Combined Responses – Settings at +6 dB

Using discrete filters, techniques can be applied to 
counteract this filter skirt interaction, and produce what 
is termed “true response”, that is, the frequency 
response closely matches the controls. Each band 
becomes independent, or very nearly so. Otherwise, to 
be effective, an operator must be very accustomed to the 
product’s particular filter and combining behavior. 

Equalizer filters began as analog second-order 
filters, and have since been implemented as digital IIR 
filters. Equalization curves with complex shapes can 
also be accomplished with single large FIR filters, 
allowing multiple frequency band settings to be 

combined into one filter.  The number of bands is 
limited only by the size of the filter.  An FIR filter may 
be designed to approximate the impulse response of 
many IIR filters, and provides the ultimate in flexibility, 
where magnitude and phase may be adjusted more 
specifically and semi-independently. In order to support 
low frequencies, many thousands of taps are required. In 
order to economically implement this, complicated 
methods like multirate processing or the use of FFT for 
fast circular convolution are used.  These methods are 
outside the scope of this paper with some examples in 
[5,6,7,8]. 
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Banks of IIR filters have some advantages over 
single FIR filters, namely simplicity and speed of 
design, and better efficiency for a limited number of 
bands that include low design frequencies [4].  Analog 
filters are designed once, while a digital filter may need 
to be redesigned when any parameter changes. Small 
IIR filters can be adjusted (redesigned) quickly, 
compared to large FIR filters. 

Equalizers are usually adjusted manually, but in 
theory an automated analysis of the sound system may 
be used.  Care then must be taken with correcting 
nonminimum phase responses, where matching the 
phase requires added delay.  Also, equalization of deep 
notches in the response should not be attempted because 
of potential adverse effects in other areas of a room, as 
well as the possibility of amplifier overload.  These 
techniques are also beyond the scope of this paper. 

2. DISCRETE FILTERS AND REQUIRED 
FREQUENCY RESOLUTION 

Because of the sheer quantity of filters, using 
discrete filters generally limits the practical frequency 
resolution to one-third octave.  How much of a 
limitation this is is debatable, and the one-third octave 
equalizer is widely recognized as effective, familiar, and 
easy to use. 

A discrete filter equalizer is the most practical choice 
for analog designs, given the difficulty of  making 
transversal (FIR) analog filters.  Second order discrete 
filters have been universally used, and their digital 
versions are designed using equations that can be fairly 
simple (or sophisticated) [9-14]. These equalizers have 
proven to be cost-effective, popular, and effective. Note 
that thirty bands at one-third octave spacing have an 
effect over roughly ten octaves, covering the widely 
accepted 20 Hz to 20 kHz range. 

The ideal equalizer would have unlimited frequency 
resolution, but what is really useful?  Human hearing 
has limited resolution, with a physical component 
defined by the critical bands, and a psychophysical pitch 
resolution that’s around 25 times better [15,16].  The 
critical bands are around one-sixth octave wide above 1 
kHz, increasing beyond one-third octave below this.  
Their exact characteristics may be a matter of debate.  
They are not at fixed frequencies but are a physical 
ability to resolve a combination of frequencies.  In the 

presence of a complex musical signal, critical bands 
limit our ability to hear narrow response variations, 
because of masking caused by closely spaced frequency 
components.  Signals with fewer spectral components 
enable perception of much narrower response 
variations. 

Even assuming unlimited perceptual abilities, there 
are other practical limitations. A typical room is not 
anechoic, and has more than one listener position, so it 
has a response that can’t be perfectly flattened. The 
frequency and phase response vary with listener 
position because of room reflections and off-axis 
speaker response variations. The most that can be done 
is to flatten the speaker/crossover and make some 
compromise for the room reflections [17,18].  Of course 
a good sound system won’t have too many severe 
narrow variations. 

It appears that one-sixth octave resolution matches 
the minimum size of the critical bands and should work 
very well, particularly if the center frequencies could be 
adjusted more finely.  One-third octave matches low 
frequency critical bands, and should be sufficient at 
higher frequencies, particularly if a parametric equalizer 
is available to tackle areas requiring better resolution.  
The ideal equalizer might have 25 times the resolution 
to match our psychophysical resolution, but at greater 
expense and with marginal improvement for a good 
sound system. 

3. FILTER RESPONSE AND BAND 
INTERACTIONS 

The discrete equalizer filters are probably always 
based on second-order bandpass filters.  Higher order 
filters have been shown to have so much phase shift that 
they are impractical for use in equalizers [19].  An 
examination of the analog second-order bandpass filter 
helps in understanding the equalizer characteristics, 
whether it is implemented as an analog circuit or in 
DSP.  This filter has a magnitude response that can be 
quite sharp at its peak, but which asymptotically 
approaches a 6.02 dB per octave slope farther away, as 
shown in Figure 2, along with the phase response. This 
gives it the potential for significant effect over a wide 
frequency range.  Its phase response is zero degrees at 
center, and approaches 90 degrees at low frequencies 
and –90 degrees at high frequencies.  Its Nyquist plot 
traces a circular path in the complex plane as shown in 
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Figure 2:  Bandpass Magnitude with the 6 dB/octave Asymptotes and Phase Below 

Figure 3, with some analysis of this in Appendix I. The 
magnitude and phase are given by the length and angle 
of the vector from the origin to a point on the path.

In equalizer designs the bandpass may be summed 
proportionally with unity gain: 
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where k is the desired peak gain and B(s) has a given Q 
(without loss of generality, the design frequency is one 
here).  The result has unity gain except near the filter 
center frequency, where the gain increases to k, and is 

commonly called a presence or bell filter, with resulting 
magnitude and phase shown in Figure 4, with Nyquist 
plot in Figure 3.  The symmetry on the frequency axis of 
the bandpass is maintained. 
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Figure 3:  Nyquist Plot of Bandpass and 12 dB Presence Filters Plotted at One-Sixth Octave Intervals 

 

Figure 4:  Presence Magnitude and Phase
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A cut filter can be designed by using subtraction: 
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The minimum level is 
k

1
, however this will result in 

a somewhat narrower response width compared to the 
boost configuration as shown in Figure 5. For a 
symmetrical cut you simply use the reciprocal transfer 
function: 
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Figure 5:  Boost and Symmetrical and Subtracted 
Cut  

For the single filter case it turns out that subtraction 

with 
k

Q
Q =′ also yields a symmetrical cut (see 

Appendix II). 

It is well known that any stable minimum phase 
transfer function can be inverted to yield another stable 
and minimum phase function. Whether the design is 
digital or analog, the condition for minimum phase 
zeros matches the condition for stable poles.  Inversion 
is simply the reciprocal of the transfer function, and 

zeros and poles exchange places.  This can be done in 
the analog domain by using feedback, or in the digital 
domain by swapping the filter coefficients and re-
scaling.  So as long as a filter is minimum phase, its 
symmetrical counterpart is given by the reciprocal 
transfer function. 

Analog equalizers and their digital counterparts are 
generally based on minimum phase filters.  It’s been 
shown that the various popular ways of combining 
multiple second order filters preserve the minimum 
phase property [21]. 

The boost and subtracted-cut presence filters have 
bandwidths which are obviously different, although they 
incorporate a bandpass with unchanging Q.  A 
clarification of the definition of bandwidth is in order 
since many definitions are possible.  For a bandpass 
filter, the bandwidth is specified by convention as the 
difference in frequencies that result in –3 dB magnitude 
response.  Once this filter is combined in different ways 
with unity gain, the door is opened to specify bandwidth 
in different ways, such as the bandwidth of the 
underlying bandpass, the frequencies where the 
deviation from flat is +/-3 dB, or as points midway 
between 0 dB and the peak or valley (notice that if a 
peak is less than 3 dB, there are no -3 dB points).  While 
these are all legitimate, one can alter the Q to achieve 
any of these bandwidths.  Digital filters have 
progressively more warping near the Nyquist frequency, 
but can adjusted to compensate for this, either by 
modifying the Q or by a more sophisticated method 
[10,22].  For simplicity one can define the bandwidth as 
the bandwidth of the underlying filter, and then the 
presence filter bandwidth, referenced to the filter 
peak/valley, will approach the bandpass specification as 
the amount of boost/cut is increased. 

Studying the presence filter magnitude response 
curve for different settings, one can see that while the 
center of the curve is naturally at the level of the setting, 
magnitude response at any distance from center is not a 
linear function of the setting. Figure 6 shows a family of 
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response curves, and Figure 7 shows the magnitude 
response at nearby frequencies spaced one-third octave 

apart versus band setting. This magnitude function can 
be seen to be somewhat nonlinear: 
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Figures 6 and 7:   Presence Filter Response Skirt Nonlinearity at One-Third Octave from Band Center  

 

 
Going from one band to thirty complicates the 

picture.  One approach is to form a set of presence 
filters and cascade them.  The complex responses 
multiply, so the total log magnitude and phase shift are 

simply the sum of the individual presence filter 
magnitudes and phase shifts.  For two filters and a given 
signal frequency: 
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Another is the parallel topology: to proportionally 
sum the bandpass outputs before summing with unity 
gain.  In parallel, the result is the complex sum of the 
individual responses.  The phase shift of the filters has 

the effect of cancelling much of the interband 
interference, while also increasing the response ripple a 
little (compared to cascaded filters) for a series of bands 
set to a nonzero level [19]. The only cancellation in the 
cascaded filters is within each filter, as the bandpass is 
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summed with unity. Figure 1 shows composite 
responses for parallel, cascaded, and interpolated 
constant-Q (a combination of parallel and cascade). 

Discrete filter fixed frequency equalizers fall into 
two categories, proportional-Q and constant-Q, which 
refer to the Q of the underlying bandpass filter.  A 
proportional-Q equalizer has filters and band level 
controls tightly coupled together such that adjusting a 
control changes the filter Q. The Q can increase 
drastically with setting, yielding very broad response for 
small settings and sharp response for large ones.  
Although popular and effective, this is not at all 
predictable for the inexperienced user, being far from 
the settings in general.  In the interest of true response, 
this paper focuses on equalizers with Q that doesn’t 
vary radically. 

Pioneering constant-Q equalizers represented a huge 
advance in the quest for a response that matched the 
settings [19].  The frequency resolution with moderate 
settings was enormously improved, and the combined 
response of adjacent bands, while it exceeded the 
settings, was much more accurate than proportional-Q 
designs.  Parallel and cascade topologies have been 
combined to yield combined responses with relative 
flatness and accuracy.  Parallel combination of alternate 
bands, then cascaded, is used to provide interpolated 
constant-Q equalization, where adjacent bands can be 
adjusted so that the response peak is moved between 
band centers [22].  

While analog designs use multiple feedback loops, 
digital implementations have an additional constraint: 
that they can have no delay-free feedback loops. 
Otherwise a sample calculation could never complete. 
This prevents a digital bandpass filter with a delay-free 
path from simply being placed in a feedback loop, as is 
done in the analog domain for symmetrical cut.  
Equivalent transfer functions may be found in theory, 
and quite easily for single filters.  Individual presence 
cut filters can be used with the cascaded topology, as 
long as the filters are very low-noise. 

 

4. CORRECTION METHODS 

One way to deal with interband interference is to 
remove it as needed using additional filters. This has 

been shown to be quite effective, although it requires 
more processing power [24]. 

One can also adjust the existing filters to yield the 
desired response, which is what one naturally does in 
practice.  This can be automated and works well, but has 
limitations.  To start with, it is difficult to make the 
response maximum at one band and minimum at the 
next.  The width of the filter skirts require one to 
compensate drastically, and the required filter settings 
can become huge, as shown in Figure 8.  In fact, for 
cascaded filters and a given fixed Q, if one attempts to 
adjust two adjacent filters to yield a given dB response 
(+N, -N) at band centers, there is a limit to the value of 
N, because the required settings become arbitrarily large 
(see Figure 9, Appendix III). This problem becomes 
more acute as the filter Q is decreased.  Figure 10 shows 
how the inter-band ripple in the response increases as 
the filter Q is increased. 

It seems that it would help to vary both the 
amplitude and bandwidth, and possibly also the center 
frequency, making the Q higher where it’s needed for 
sharp transitions while keeping it lower otherwise to 
reduce ripple.  But in general this is a substantial 
nonlinear optimization problem, and doesn’t readily 
lend itself to real-time solution. 

Various algorithms can be applied to these 
optimization problems [23]. There are simple 
algorithms such as steepest descent, and more 
sophisticated algorithms with faster convergence.  A 
human being might simply look at the difference 
between the composite response and the settings, and 
iteratively adjust the settings by maybe half the error. 
This descent technique was applied automatically some 
time ago [25], and works well.  

In general, optimization methods can perform the 
best, and can produce true response with any equalizer 
topology, given effective methods and high 
performance hardware.  Otherwise they will perform 
slowly and with some caveats.  It’s possible for a 
method to converge unpredictably slowly, or to 
converge on a local minimum, and in that case the 
results may be unpredictable.  The error criterion won’t 
necessarily be appropriate for audio, resulting for 
example in a small  
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Figure 8:  Abrupt Transitions Require Large Adjacent Band Settings 

 

Figure 9:  Maximum Response Half-Transition Between Adjacent Bands Versus Filter Q 
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Figure 10:  Inter-band Ripple Increases with Filter Q of 2,3,4, and 5. 

 

error over a large frequency range, instead of allowing a 
moderate error over a smaller range.  

Since for cascaded filters the magnitude responses of 
the filters sum (in dB), and since the effect of a filter on 
nearby frequency response points is nearly linear over a 
moderate range, a linear approximation can be used 
[26].  A linear approximation can also be applied to 
other topologies.  Given a fixed linear system (with an 
invertible system matrix) its inverse can be calculated 
once and applied to the settings dynamically to produce 
the internal filter settings.  This results in the desired 
response at band centers, and it works well over a 
moderate range of settings.  Beyond this, nonlinearity 
effects become significant. 

Since the most interband interference is from the two 
adjacent bands, a linear approximation would be more 
effective if those response points could be made a linear 
function of setting (by symmetry the magnitude at the 
left and right adjacent band frequencies are equal).  This 
linear relationship can be produced by adjusting the 
filter Q as a function of setting such that adjacent band 

response is a linear function (in dB) of the setting1. 
Figure 11 shows a family of response curves, and Figure 
12 shows the magnitude response at nearby frequencies 
spaced one-third octave apart versus band setting 
(compare to Figures 6 and 7).  A closed form equation 
for the function Q(dB) is derived for this in Appendix 
IV. 

It turns out that the response at more distant band 
frequencies is made more nearly linear, and is small 
enough that the nonlinearity is insignificant.  The Q is 
highest for larger settings, yielding a magnitude 
response with excellent resolution with low ripple.  If 
desired, the Q may be adjusted to optimize the linearity 
at several frequencies, but when this was done by the 
author, the result was found to be very close to the 
closed form solution.  Ironically, a mild form of 
proportional-Q has been employed to achieve true 
response. 

                                                           
1 This application of variable Q is covered by a patent 
application. Contact Rane Corporation for more details. 
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In theory this is fine, but there are remaining issues.  
When adjacent bands are set very differently the method 
will tend to produce overshoots just beyond band 
centers.  Also, in this case the resultant filter settings 
may become larger than desired.  These two issues may 
be handled effectively by means of small constraints on 

the settings (applied transparently), and this only 
slightly compromises the resolution. 

Analog filters have been assumed here for 
simplicity, while digital filters may be more appropriate 
in practice. In this case, the response warping needs to 
be considered for high frequency bands. 

 

 

Figures 11 and 12:   Response Linearized at One-Third Octave from Band Centers 
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Although better performance is practical, equalizers 
designed using discrete filters have provided good 
functionality at low cost.  Their main drawback has 
been the mismatch between settings and actual 
response, a situation which has been improved using 
creative series and parallel topologies.  True response 
can be approximated to different degrees by many other 
techniques which digital technology has made more 
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neighboring bands, and allowing an excellent match.  
As technology progresses, large FIR filters or 
optimization techniques may provide rapid, precision 
control at low cost.  Whatever the method, true response 
is a worthwhile objective. 

6. APPENDIX I - DERIVATION AND 
COMPLEX RESPONSE OF THE SECOND 
ORDER BANDPASS 

The second-order bandpass with 1=oω  may be 

constructed from the first-order lowpass using the 
transformation (7) [20]. 
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Substituting into a first-order lowpass with given cutoff, 
yields the bandpass (8)
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The cutoff frequency of the lowpass becomes the 
bandwidth of the bandpass. 

It may occur to the reader that this second-order 
bandpass transfer function might not be unique. If 
instead one starts with a general transfer function 
which is a ratio of polynomials of degree two or less, 
and which has zero gain for both zero and infinite 
frequency, the denominator must have degree two 
and the numerator degree one. Add the requirement 
of a peak gain of one, it is easy to show that the form 
must be: 

12 ++ ass

as
            (9 ) 

Finally, add the condition that the magnitude 

response be 0.5 at 1ωω = , which specifies a –3 dB 
bandwidth, and a little algebra yields 
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The bandwidth is geometrically symmetrical about 

1=oω , resulting in: 
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So given the conditions above, this transfer function 
is unique and so is the transformation from first-

order. The transformation can be evaluated alone 
for :0 , >= ωωjp
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This maps positive ω  (p on the positive j axis) back to 
s on the entire j axis, but with the characteristic 

( ) ( )ωω ss −=−1               (13 ) 

which maps ( ) 1 , 01 >= ωs to the positive j axis, 

and 10 << ω to the negative j axis. Plotted on a 

logarithmic frequency scale, ( )ωs  is antisymmetric with 

respect to 1=ω . 

 
The complex response of the first-order lowpass can 

be further analyzed, both for its direct use with positive 
frequency, and for bandpass use which includes 
negative s. The lowpass may be split into constant and 
allpass portions: 
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has a complex response that traces 

the unit circle, and can be shown to have phase 

shift .tan2 1 ωθ −−=  

For positive frequency, the lowpass transfer function 
has a complex response that traces a semicircle with 
negative imaginary part. The bandpass transformation 
maps positive frequency onto the entire imaginary axis, 
and the complex response of the bandpass traces an 
entire circle (the point –1 needs special care). 

A presence filter scales this path and shifts it right by 
one, as shown in Figure 3. 

7. APPENDIX II - EQUIVALENCE OF 
SYMMETRICAL NOTCH AND 
SUBTRACTED NOTCH WITH MODIFIED Q 

A presence filter is designed using proportional amounts 
of a bandpass summed with unity gain. For simplicity, 
the design angular frequency is one. The bandpass is: 
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12 ++
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s
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The resulting transfer function G is given by: 
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A symmetrical cut has the reciprocal transfer function: 
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Q
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s

Q

s
s

sH             (16 ) 

Both the symmetrical cut and subtracted notch filters 
will require a minimum gain at the design frequency, 
and for equal but opposite dB values the required gain is 
(1/k). The Q for the subtracted notch case won’t be 
assumed to be the same as before: 
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Finally, comparing (16) and (17), one can see that they 
are equal if the Q is given by (18). 

k

Q
Q =′               (18 ) 

8. APPENDIX III - MAXIMUM ALTERNATE 
BOOST/CUT ON ADJACENT BANDS 
ACKNOWLEDGEMENTS 

The transfer function and squared magnitude of a 
bandpass filter proportionally summed with unity 
(presence filter) are given by 
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Now for 21 , HH having center frequencies oo αωω , , and with 21 , HH set to boost and cut respectively, in equal 

amounts, the result is (21): 
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The taking the limit as k approaches infinity, the 
squared-magnitude is:
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The maximum possible magnitude at oω is given 

by ( )oM ω , which reduces to: 

( ) ( ) 1
212 +−= −ααω QM o              (23 ) 

A one-third octave equalizer 

has ( ) 121736.0 then so ,2 23

1

+≈= QM oωα  

This being the magnitude squared, the maximum in dB 
for a Q of 4 is only about 6.51 dB. Although the peak of 
the magnitude curve lies just to the side of the band 
center, it is only slightly larger. By symmetry, the 
magnitude at the other band center is equal but with 
opposite sign. 

 

9. APPENDIX IV - CLOSED FORM 
SOLUTION FOR Q(K) 

Given a presence filter, the filter Q can be adjusted as a 
function of setting, Q(k), such that the magnitude 
response in decibels at a preselected frequency varies 
linearly with the setting in decibels. 

The frequency 1ω  can be considered the ratio of the 
preselected frequency to the filter design frequency, and 
the complex response function H is given by: 
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The linear dB constraint with proportionality constant C 
can be written: 
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Taking the squared magnitude yields (26): 
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Combining (25) and (26) results in: 
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Solving for the function Q yields: 
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The constant C is still undetermined, but is found by 
taking the log of both sides of (27), and choosing a 

particular value of ( )okQ and ok : 
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Any reasonable values can be used for ( )okQ and ok , 

but ok  should near the midrange of normal filter band 

boost adjustment. Larger ( )okQ  will increase response 

ripple and lower ( )okQ  will increase the amount of 

correction required by this method. 
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